DevOps Conference
The Conference for Continuous Delivery, Microservices,
Containers, Clouds and Lean Business

Serverless Deep Learning

Session

EARLY BIRD
Until July 30:
✓ Team discounts
✓ Save £145

Register Now

EARLY BIRD
Until July 30:
✓ Team discounts
✓ Save £145

Register Now

Until June 18:
✓ Workshop Day for free
✓ Raspberry Pi or C64 Mini for free
✓ Save over $840
Register now
Until June 18:
✓ Workshop Day for free
✓ Raspberry Pi or C64 Mini for free
✓ Save over $840
Register now
Until August 13:
✓ Raspberry Pi or C64 Mini for free
✓ Save up to 520 €
Register now
Bis 13. August:
✓ Raspberry Pi oder C64 Mini for free
✓ Bis zu 520 € sparen
Jetzt anmelden
Until July 2:
✓ Raspberry Pi or C64 Mini for free
✓ Save up to $330
Register now
Until July 2:
✓ Raspberry Pi or C64 Mini for free
✓ Save up to $330
Register now
Until August 20:
✓ Transformation Day for free
✓ Raspberry Pi or C64 Mini for free
✓ Save up to 870 €
Register now
Bis 20. August
✓ Transformation Day for free
✓ Raspberry Pi oder C64 Mini for free
✓ Über 870€ sparen
✓ Bis zu 375 € sparen
Jetzt anmelden
Infos
Tuesday, June 30 2020
11:15 - 12:00

Deep learning achieves the best performance for many computer vision, natural language processing, and recommendation tasks and thus it’s becoming increasingly more popular. However, it’s quite difficult to use deep learning in production as it requires a lot of effort to develop proper infrastructure for serving deep learning models.Platforms for serverless computing, such as AWS Lambda, provide a good alternative: they take care of scaling up and down and offer attractive pricing based only on actual usage. These platforms, unfortunately, have other limitations that make it problematic. In this talk, we show how to come around these limitations and be able to use AWS lambda and TensorFlow to serve deep learning models. We also discuss important maintenance aspects such as cost optimization, monitoring, deploying, and release management. Finally, we cover the limitations of AWS lambda, compare it with “serverful” solutions, and suggest workloads for which serverless is not the best option.

Take me to the full program of Zum vollständigen Programm von Online Edition Online Edition .

This Session belongs to the Diese Session gehört zum Programm vom Online EditionOnline Edition program. Take me to the program of . Hier geht es zum Programm von London London .

This Session belongs to the Diese Session gehört zum Programm vom Online EditionOnline Edition program. Take me to the program of . Hier geht es zum Programm von New York New York .

This Session belongs to the Diese Session gehört zum Programm vom Online EditionOnline Edition program. Take me to the program of . Hier geht es zum Programm von Berlin Berlin .

This Session belongs to the Diese Session gehört zum Programm vom Online EditionOnline Edition program. Take me to the program of . Hier geht es zum Programm von Singapore Singapur .

This Session belongs to the Diese Session gehört zum Programm vom Online EditionOnline Edition program. Take me to the program of . Hier geht es zum Programm von Munich München .

This Session Diese Session belongs to the gehört zum Programm von Online EditionOnline Edition program. Take me to the current program of . Hier geht es zum aktuellen Programm von Online Edition Online Edition , London London , New York New York , Berlin Berlin , Singapore Singapur or oder Munich München .

Stay tuned:

Behind the Tracks

 

Kubernetes Ecosystem

Docker, Kubernetes & Co

Microservices & Software Architecture

Maximize development productivity

Continuous Delivery & Automation

Build, test and deploy agile

Cloud Platforms & Serverless

Cloud-based & native apps

Monitoring, Traceability & Diagnostics

Handle the complexity of microservices applications

Security

DevSecOps for safer applications

Business & Company Culture

Radically optimize IT

Organizational Change

Overcome obstacles on the way towards DevOps

Live Demo #slideless

Showing how technology really works